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Abstract—Energy profiling and optimization are expected to be
crucial factors impacting the realisation of the Internet of Things
(IoT) as more intelligence is deployed at the network extremes
to achieve better response times in the proximity of where
data are harvested. To improve the performance of streaming
analytics jobs, several schedulers have been designed to tackle
key challenges in edge computing realms, including resource
heterogeneity and highly volatile network links. However, energy-
aware scheduling for streaming analytic jobs is at best, not
adequately examined. In this article, we introduce PowerStorm, a
scheduler for streaming analytic jobs that is designed to explore
trade-offs between performance and energy consumption in geo-
distributed edge computing settings. We implement our scheduler
for Apache Storm and show the scheduler’s energy saving
capabilities over the Yahoo streaming benchmark with worker
nodes featuring heterogeneous power and resource capabilities
on both a physical and emulated testbed.

Index Terms—Big Data, Internet of Things, Energy Profiling.

I. INTRODUCTION

The Internet of Things is emerging as the dominating
service paradigm bridging the physical with the digital world
through internet-enabled devices, denoted as things, that are
capable of sensing their surroundings [1]. With IoT penetrating
multiple areas of our everyday lives, new applications are
emerging including autonomous robotic swarms, intelligent
transportation services and AR-powered wearable technology.
These applications are giving birth to an exponential growth
of the data generated by more than 25 billion geo-distributed
things with the International Data Corporation (IDC) esti-
mating that the IoT datasphere will well surpass 79 ZB in
volume by 2025 [2]. At the same time, the need for intelligent
responses with better response times is apparent.

With IoT hardware vastly improving, Distributed Stream
Processing Engines (DSPEs), such as Storm, Spark-Streaming
and Flink, are now being explored to foster scalable, online
and low-latency IoT applications where data is processed
in-proximity of it’s origins instead of being moved to the
cloud [3]. However, data processing in edge ecosystems has its
challenges [4]. In edge computing, resource heterogeneity is
the norm, which contradicts with the operating requirements of

DSPEs that are optimized for homogeneous machine clusters
found in the cloud [5]. In turn, the network capabilities of each
processing node can also significantly differ, as well as, the
network distance from other nodes. The latter has the potential
to significantly impact performance by creating bottlenecks
and straggling tasks [6]. To overcome these challenges several
streaming job schedulers have been proposed to improve the
performance and scalability of stream processing in geo-
distributed settings [7] [8] [9]. This is usually achieved by
acknowledging heterogeneity, opting for allocating computing
tasks to the most powerful worker nodes and reducing the
communication overhead for data shuffling tasks [10].

According to recent estimates, the energy footprint for ICT
has well surpassed the 1% mark of the global energy demand
and is growing at a 4.3% annual rate [11]. Advancements
in AI are further accelerating this growth [12]. Hence, more
initiatives in the form of policy changes (i.e., EU green deal,
UK net-zero) are calling for the migration to sustainable
(edge) computing practices [13] [14]. This is further fueled
by the fact that, as Gartner states, 75% of enterprise data are
expected to be created and processed outside of traditional
datacenters by 2025 [15]. Hence, a new problem dimension
arises that is the focal point of this work; striking a balance
between energy-efficiency and performance optimization for
data stream processing in edge computing settings.

The contributions of this paper are:
• We provide a generalized problem description and an

algorithmic framework that can be exploited by DSPEs to
explore trade-offs between performance optimization and
energy-efficiency when mapping operators of streaming
analytics jobs to worker nodes.

• We introduce PowerStorm, a scheduler implemented for
Apache Storm that embeds the designed energy-aware
algorithmic framework.

• We evaluate the efficacy of our scheduler using the
Yahoo streaming benchmark over a physical and emu-
lated testbed comprised of multiple edge devices with
heterogeneous resource, network and energy constraints.



In the experimentation, PowerStorm is compared against
the default Storm scheduler and R-Storm, the open-source
and most popular resource-aware Storm scheduler.

The rest of this paper is structured as follows: Section
2 provides a brief overview Storm. Section 3 provides an
in-depth problem description. Sections 4 and 5 introduce
PowerStorm and elaborate on our energy-aware scheduling al-
gorithm. Section 6 provides a comprehensive experimentation
analysis. Section 7 presents the related work, while Section 8
concludes the article and outlines future directions.

II. THE STORM ECOSYSTEM

Storm (https://storm.apache.org/) is a distributed computa-
tion system for processing data streams in real-time and serve
results to users with low latency and high throughput. In brief,
a Storm job is described as a Topology that is the input data
structure received by the Storm cluster for continuous exe-
cution and analytics insight extraction. An analytics job may
contain multiple queries and therefore, multiple Topologies.
In its most simplistic form, a Topology is a Directed Acyclic
Graph (DAG) comprised of multiple nodes that can take one of
two forms and with edges depicting the flow of data between
applied operations. Nodes can be Spouts or Bolts operators,
as shown in Fig. 1. A Spout is linked to a data source and is
in charge of data ingestion by receiving data as a stream of
tuples and delegating these tuples to respective Bolts, based
on the given Topology. Examples of data sources are various
databases, distributed file-systems and even high-performance
queuing services. In turn, a Bolt is a query operator that applies
the processing logic to given data (i.e., filter, aggregation, join)
and emits data further downstream.

A Storm cluster is comprised of two basic components: a
leader node, denoted as Nimbus, and worker nodes, denoted
as Supervisors. Nimbus, quite similar to the JobTracker in a
MapReduce cluster, is the entity responsible for the job coordi-
nation that includes the placement of operators to Supervisors
and the overall overview of the cluster lifecycle management
(e.g., handling failures). In turn, Supervisors are the nodes
that accept analytic tasks from Nimbus and coordinate their
execution on the local environment they have access to. In a
geo-distributed IoT environment Supervisor’s may be deployed
on Edge, Fog or Cloud nodes. It is worth mentioning that a
third component is also required for the successful deployment
of a Storm cluster, although not considered part of Storm
per se. This third component is ZooKeeper, which handles
the cluster communication overlay between Nimbus and the
Supervisor nodes along with some additional functionality
including worker health reporting.

III. PROBLEM DESCRIPTION

A. Distributed Stream Processing

In distributed stream processing the scheduling problem
boils down to finding a valid mapping of the operators com-
prising an analytics job (O = o1, o2, . . . ) to the worker nodes
participating in the computing cluster (W = w1, w2, . . . ).
For the default Storm scheduler, denoted henceforth as the

Fig. 1. An Exemplary Storm Topology

Baseline, a valid mapping simply adopts a pseudo-random
round-robin placement of operators to workers making a
broad assumption that worker nodes present both homoge-
neous resource profiles and network distance [16]. However,
not acknowledging these problem dimensions, especially in
geo-distributed settings, results in some of the nodes being
extremely strained and over-utilized while other nodes with
resource availability not efficiently utilized.

While the Baseline mapping is valid it can be far from
optimal. Assuming c resources of interest (i.e., cpu, memory),
the definition can be extended to any schedule that meets the
resource constraints (R = r1, r2, .., rc) of the job’s operators
when placed on workers with respect to their resource avail-
ability (A = a1, a2, .., ac) based on an optimization strategy
where the mapping is steered towards the maximization of one
or more metrics. When optimizing stream processing perfor-
mance the metric of interest is usually throughput, measured
at sink nodes and defined as the number of tuples processed
in a pre-defined time window (i.e., 10min). Throughput is di-
rectly impacted by the computational latency of the operations
executed on the workers and the communication latency for
data transfers among the operators in the path from source to
sink [10]. Hence, the efficient execution of a job is constrained
by the workers’ resource capacities (i.e., compute, memory),
as well as the communication latency between workers during
the exchange of data and intermediate results. Assuming
that workers can meet the resource constraints of the job’s
operators, the communication latency is what dominates and
affects the overall throughput of a geo-distributed job [17].

B. Energy-Aware Stream Processing

Energy-awareness, and subsequently green computing, is an
important aspect for IoT that can critically affect the liveness
of the underlying processing infrastructure [18] as well as the
overall carbon footprint of the deployment [12]. In a geo-
distributed environment, edge nodes may present not only
different resource and network capacity but also different
operating power levels. Power, denoted as P directly impacts
energy consumption (E = P · τ ) as the amount of energy
required by a computing system to execute a specific task
is calculated by multiplying the power drawn with the time
(τ ) required for the task to finish. Power usage is reported
as the sum of Pidle + Pdyn, where Pidle denotes the load-
independent power drawn by the computing system, even if no



task is under execution, and Pdyn is load dependent. Assuming
the task is a software service (i.e., data stream processing)
the key components contributing to Pdyn are the use of
processors and memory. Hence, power is an important attribute
as many worker nodes may be candidates for the placement
of an operator in terms of their computational and memory
availability. However, when they feature different power levels
then the energy consumption contributed to performing the
analytic task will incur a higher energy footprint if the more
power-hungry nodes are selected.

To give an example, a Raspberry Pi 4 model B presents
a Pmax = 8W , while the max power drawn by a Nvidia
Jetson AGX Orin is 40W and for a Dell PowerEdge R610
Pmax = 330W . All these can satisfactory fit an operator
applying a simple data filter. Hence, if the task can run
on the Raspberry Pi, then there will be significant energy
savings. Moreover, the problem can become even worse if
the topology is battery-powered, as the worker selection can
severely impact an analytic job in the near future with nodes
deemed unavailable very early due to battery exhaustion.

Therefore, minimizing energy consumption for data stream
processing in geo-distributed settings can be formalized as an
optimization problem and summarized as follows:

minimize

|W ′|∑
j

Pj W ′ ⊆ W (1)

subject to:
|O|∑
i

Ri ≤ Aw ∀wj ∈ W ′ (2)

and

|W |∑
j

Si,j = 1 ∀oi ∈ O (3)

and

|B|∑
b

qb > Q Bsinknodes ⊂ O (4)

Equation 1 highlights our optimization goal that is to min-
imize the power drawn by the subset of workers (W ′ ⊆ W )
selected for operator placement. We use power and not energy
since, as mentioned, energy is dependent to power multiplied
by the time enforced. The limitation expressed in equation 2
ensures that resource availability of the selected workers meets
the requirements of the job’s operators. In turn, the limitation
in equation 3 ensures that each operator is placed on a single
worker with the placement vector S expressed as follows:

Si, j =

{
1, if oi mapped to wj

0, otherwise
(5)

However, energy-efficiency is an optimization objective
where trade-offs with performance guarantees must be ex-
plored. We emphasize trade-off as simply minimizing energy
consumption can severely penalize performance and affect
QoS when network distance among workers is far from
homogeneous. Towards this, an energy-aware scheduler must
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Fig. 2. PowerStorm in the Storm Ecosystem

employ an optimization process that outputs a valid mapping
assigning the set of operators oi ∈ O to the worker nodes
wj ∈ W with resource availability so that the overall energy
consumption is reduced by making use of the least energy con-
suming workers when more than one candidate are available.
At the same time though, the limitation expressed in equation 4
must be respected so that the overall throughput measured
across the B sink nodes of the operator graph (B ⊂ O) does
not drop below a user-defined threshold.

This ends up being a constraint optimization problem. Such
problems are NP-complete [19], however many schedulers
have been proposed to optimize the throughput of data stream
processing by adopting various heuristics so that the complex-
ity of the decision-making does not create an additional over-
head to the system real-time responsiveness [7] [8]. Approxi-
mations through heuristics are required as the longer the (re-)
scheduling takes to compute, the longer the downtime/delay
faced by the actual data stream processing [8]. In Section V
we show our heuristic-based energy-aware scheduling process
for geo-distributed data stream processing jobs.

IV. POWERSTORM IN THE STORM ECOSYSTEM

A high-level overview of how PowerStorm components fit
within the Storm ecosystem is showcased in Fig. 2. In partic-
ular, PowerStorm introduces three components, namely a Job-
Parser, PowerStorm Agents, and the PowerStorm Controller,
with these running alongside Storm and without requiring any
adaptions to the vanilla Storm package release.

A typical analytics job starts with the user submitting via
the JobParser the required artifacts along with a description of



any preferences. These, may include weights for the Sched-
uler’s optimization function that denote the significance the
Scheduler should give to performance, network overhead and
energy prioritization. In turn, the user may (optionally) denote
the minimum acceptable throughput that can be tolerated.
This tells the Scheduler that low-power worker nodes can
be preferred over power-hungry ones but only if the current
throughput can be maintained above the threshold so that QoS
is not penalized for energy-efficiency to a non-desired point.
When this threshold is violated, the Scheduler will overwrite
the energy optimization weighting leaving the algorithm to
only consider resource and network-aware optimization.

With the configurations set, the job is passed to the Pow-
erStorm Controller. The Controller is tasked with feeding
Nimbus with the customized Scheduler configuration and next,
the coordination of the monitoring data collection. In addition,
the Controller can request the operator placement to be re-
executed. Hence, the Controller does not interfere with Nimbus
(cluster Leader) that handles cluster supervision, health checks
and faults. Rescheduling the placement process is something
PowerStorm offers as in a loosely-coupled edge deployment
the worker nodes may come and go with the available resource
pool substantially changing. This is available in two modes:
(i) periodically, with the placement run every X minutes; or
(ii) deviation-based, with the process re-executed when the
resource pool deviates from the last run.

During the continuous job execution, monitoring data is col-
lected by PowerStorm Agents with one Agent residing on each
worker. Monitoring entails resource utilization, network link
latency and power consumption. For the power consumption,
PowerStorm has two modes of operation. The first supports
the extraction of real energy consumption with data obtained
through an Agent monitoring plugin that exposes the relevant
interface for extension to support various energy metering
libraries and devices. PowerStorm also comes with several
ready-to-use templates for various smart meters (i.e., Meross).
The second mode supports inference of energy data from
energy models that take advantage of infrastructure utilization.
This mode is ideal when embracing an IoT testing tool such
as Fogify [20] with which PowerStorm can be integrated.
Nonetheless, users are free to adopt their own energy models
by, again, extending the PowerStorm Agent plugin interface.

V. ENERGY-AWARE SCHEDULING

Algorithm 1 provides a high-level overview of the energy-
aware scheduling to output a valid mapping of operators to the
current workers comprising the computing environment. The
algorithm starts by considering a heuristic (line 2) where topo-
logical ordering is applied on the Storm job graph. Topological
ordering is feasible under the assumptions that the graph
presents no cycles and there is at least one node with zero
in-degree. These are met, as Storm jobs are directed acyclic
graphs and for actual data processing at least one node must as-
sume the role of a Spout for data ingestion. Hence, topological
ordering is applicable and utilized to obtain a natural ordering
of the operators so that operators exchanging data (adjacent

Algorithm 1 Energy-Aware Scheduling
Input: Graph G, Workers W , UserConfigs C
Output: Placement S of the graph operators to worker nodes
Ensure: PowerStorm Scheduler is running

1: S ← {} //the placement holder
2: T ← VerticesTopologicalOrdering(G)
3: Z ← Z.weights()
4: q ← Scheduler.getSinkThroughput()
5: if q < C.throughputThreshold then
6: Z["pow"] ← 0
7: end if
8: for each o in T do
9: S ← OperatorPlacement(o,W,Z)

10: S← S ∪ s
11: end for
12: return S

Algorithm 2 Operator Placement
Input: Operator o, Workers W , Weights Z
Output: Selected worker node for operator given operator
Ensure: PowerStorm Scheduler is running

1: penalties ← {}
2: δ ← o.getParentCriticalPath()
3: for each w in W do
4: q ← Scheduler.getLatency(w)
5: netdist ← δ + Scheduler.getLatency(w)
6: z1 ← Z["res"], z2 ← Z["net"], z3 ← Z["pow"]
7: p← z1 ·

∑N
k=1 |rk − ak|

+ z2· netdist
+ z3· Scheduler.getPowerLevel(w)

8: penalties← penalties ∪ p
9: end for

10: wsel ← min(penalties)
11: o.updCriticalPath(q)
12: return wsel

graph nodes) are scheduled in (near) succession to exploit data
locality. For example, suppose oi and ok are adjacent operators
and that oi is placed on worker wj . If the resource availability
of this worker permits Rok <= (Awj

− Roi) then it would
benefit the most to prioritize the placement of ok on the same
node rather than some other operator.

Now, if adjacent operators cannot be placed together then
they should be placed close to each other as functioning in geo-
distributed settings introduces, as mentioned in Section III, a
significant communication overhead. Latency is directly linked
to the improvement of the overall throughput as it defines
the highest frequency at which analytic computations can be
outputted by the given topology. At this point we consider a
second heuristic to avoid measurements for all network links
between workers and for all operator pairs. Specifically, to
reduce the communication overhead one must minimize the
latency aggregated from source to sinks. In an unrealistic
scenario where all worker nodes feature infinite resource
availability this boils down to a critical path problem with a
greedy solution and a O(V +E) complexity. A critical path is
denoted as the slowest path from source to sink in the operator
graph. However, operators have different resource constraints
and each worker features different availability. In turn, when
more than one workers are candidates for operator placement,
we want to opt for a worker providing energy savings.
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Fig. 3. High-Level Overview of the Yahoo Streaming Benchmark Workload

Hence, in Algorithm 2 which deals with the selection of
a worker node for the current operator, we introduce a third
heuristic. Specifically, we loosen the requirement of always
opting for the worker with the smallest network distance
from its predecessor and instead adopt a penalty function that
considers in a normalized form; resource suitability, network
distance and the worker’s operating power level (lines 7-8).
With this function, during operator placement we assess the
suitability of each worker node and in the end take the worker
with the smallest penalty (line 10).

Finally, we note that the problem dimensions feature
weights for two reasons (algo. 2 - line 6). First, so that users
can adjust the importance of each dimension to their pleasing.
Second, so that when the user-given minimum acceptable
throughput cannot be achieved, the energy saving dimension
is reduced to zero with the scheduling process rolling back
to optimizing solely for performance and guaranteeing QoS
(algo. 1 - lines 4-7). Through this algorithmic process, Power-
Storm shows preference to low-power workers, if throughput
permits, and operators are placed in proximity which reduces
the network overhead so that throughput is not penalized by
the data exchange latency.

VI. EVALUATION

This section introduces an evaluation of the PowerStorm
scheduler utilizing an open and publicly accessible benchmark
suite over two experimental multi-worker setups.

A. Schedulers Under Comparison

We compare the efficacy of PowerStorm against:
• the Baseline Storm scheduler, which performs a pseudo-

random round-robin distribution of operators among
workers nodes;

• R-Storm, a popular resource-aware scheduler favoring
operator assignment to the most powerful workers to
increase both performance and data locality so that the the
network overhead is reduced and throughput is improved.

B. Benchmarking Suite

We adopt the open and popular Yahoo Streaming Bench-
mark [21] designed specifically to evaluate the performance
of distributed stream processing engines. In a nutshell, the
benchmark is an ad campaign analytics pipeline (Fig. 3),
run on Storm, performing the following: (i) reading and
parsing incoming ad traffic data, (ii) filtering, (iii) projection of
unnecessary values, (iv) combining with campaign data, and
(v) updating stats and storing the results. All raw streaming
data are extracted from a Kafka queue, while an in-memory
database (Redis) is used to store intermediate data and the

Fig. 4. Operator Placement per Worker Node

Fig. 5. Scheduler Energy and Stream Processing Latency Comparison

produced results. Through the benchmark suite one can con-
figure many parameters of the workload (i.e., ad campaigns)
which we leave to the default values and set the load to 1000
tuples/s and the benchmark duration to 30min. We adopt the
vanilla implementation of Apache Storm (v2.3) and extend
the deployment to include the PowerStorm JobParser and
Controller on the Nimbus master node and the PowerStorm
Agents on each worker node so that monitoring data for
resource utilization, QoS and energy profiling are extracted.

C. Experimenting with a Physical Deployment

The first experiment run is a physical testbed with the Storm
workers comprised of a power-hungry Dell PowerEdge server,
denoted as nc1, and 4 Raspberry Pis (rpi1-rpi4). The specifi-
cations of these devices are depicted in Table I. An additional
RPI is dedicated for hosting Nimbus and the Yahoo workload
generator. The nc1 is connected to a smart power distribution
unit and the RPIs are connected to Meross smart meters, with
PowerStorm Agents extracting energy consumption data every
5 seconds. We note that for this experiment all nodes are
placed in the same network with the intra-network latency
among all nodes relatively stable (measured with < 1.2ms
difference) so focus is driven on resource heterogeneity and the
difference in operating power levels. Hence, for PowerStorm
we adopt a balanced weighting (algo 2) for performance and
energy prioritization during the worker selection process.

Fig. 4 and 5 depict the experiment results to draw compar-
isons among the under-evaluation schedulers. Fig. 4 shows the



Device Type Quantity Processor Memory
(GB)

Power
Range (W)

Experiment
Scenario

DELL PowerEdge R610
(nc1) 1 12 core@2.4GHz 12 175-330 1 and 2

Nvidia Jetson Orin Nano
(nano1, nano2) 2 6 core@1.5GHz 8 7-14 2

Nvidia AGX Orin
(agx1, agx2) 2 8 core@2.2GHz 32 18-40 2

Raspberry Pi 4 model B
(rpi1, rpi2, rpi3, pri4) 4 4 core@1.5GHz 4 4-8 1 and 2

TABLE I
WORKER NODE RESOURCE AND POWER CONFIGURATIONS

Network Latency
(ms)

Worker Nodes
Exp-2A

Worker Nodes
Exp-2B

low-range 5 nc1, nano1, rpi2 nano1, nano2, rpi3
mid-range 10 rpi1, rpi4, nano2 rpi1, rpi2, agx2
far-range 15 agx1, agx2, rpi3 agx1, nc1, rpi4

TABLE II
NETWORK CONFIGURATIONS FOR EMULATED TESTBEDS

percentage of operators mapped to each worker in the deploy-
ment. From this, we immediately observe that in the case of
the Baseline scheduler, operators are indeed allocated fairly
to all worker nodes irrespective of their resource capabilities.
Now, when embracing R-Storm, all operators are allocated to
the powerful nc1 worker as the resource availability of nc1 is
large enough and hence, there is no need to activate any of
the other workers. However, when embracing PowerStorm, we
observe that the operators are shared among 2 RPIs avoiding
the activation of the power-hungry server.

Fig. 5 extends the evaluation to the effect (and trade-
off) in energy consumption and overall latency. To draw
a better understanding, the results are shown for R-Storm
and PowerStorm as percentage deviations from the Baseline
scheduler. From this, we first observe that the scheduling
process of R-Storm has a direct positive effect in performance
with the overall latency reduced by 24ms in comparison to
the Baseline. This effect is of course due to the fact that all
operators end up on the same worker eliminating the need
for data to move across the network. However, to sufficiently
achieve the required computations, nc1 operates at high power
levels that result in a 14% increment in the overall energy
consumption, again in comparison to the Baseline. On the
other hand, PowerStorm is able to take advantage of the low-
power RPIs and hence energy consumption is reduced by 19%
in comparison to the Baseline and 43% in comparison to R-
Storm. In turn, the energy savings of PowerStorm come with
only a slight performance penalty with the overall latency for
stream processing only increasing by 9ms.

D. Experimenting with Emulated Deployments

The next two experiments are run on an Openstack com-
puting cluster employing Fogify [20] to carve emulated edge
devices with heterogeneous resource and power features, while
also establishing network connections among the devices by
shaping the connectivity to the requirements of each exper-
iment. Table I presents the resource configurations for all
worker nodes comprising the Storm cluster where 4 com-
pletely different emulated device profiles are embraced. In
particular, an additional Nvidia Jetson Nano is dedicated for

Fig. 6. Operator Placement - Exp A

Fig. 7. Operator Placement - Exp B

hosting Nimbus and the Yahoo workload generator. Next,
we request from Fogify to create 3 wide-area networks with
varying latency from the workload generator (Storm Spout)
and to randomly place 3 worker nodes in each network as
shown in Table II. For thoroughness, this random assignment
is performed twice so that we can show two experiment runs
with obvious (detrimental) scenarios avoided (i.e., 3 rpi at low-
range and nc1 at far-range). For PowerStorm we will adopt two
modes of operation where one embraces a balanced weighting
for performance, network overhead and energy prioritization
during the worker selection process and the other completely
favors energy optimization denoted as PowerStorm-eg.

We follow the fashion of the previous experiment. Fig. 6
and 7 show the percentage of operators allocated per worker
depending on the scheduling strategy. We confirm, again, that
the Baseline fairly allocates the operators. R-Storm, in both
runs, takes advantage of nc1 as the most powerful node and
then takes the next powerful node closest to it, completely



Fig. 8. Scheduler Energy Comparison

ignoring the physical distance from the data source. The fully
energy-aware strategy of PowerStorm allocates the operators
to the low-power nodes, in this case all 4 RPIs and 1 more
node (either an agx or nano) irrespective of network distance.
On the other hand, when PowerStorm embraces all three
optimization dimensions, a balance is striked among energy-
efficiency, performance and network overhead. In exp-2A, the
nano-1 and rpi-2 are embraced from the low-range WAN and
the two rpi’s from the mid-range WAN, while in exp-2B the
2 nano workers and rpi-3 are embraced from the low-range
WAN and rpi-1 from the mid-range WAN.

Next, we compare PowerStorm to R-Storm by using the
Baseline scheduler as a reference point with Fig. 8 and 9
showing the results in terms of energy consumption and
stream processing latency. From these we immediately observe
the significant energy savings that PowerStorm can achieve.
Specifically, PowerStorm reduces energy consumption by 18%
and 16% respectively in comparison to the Baseline Storm
scheduler. In terms of latency, now that we have a larger
deployment, we observe that by utilizing less devices and
placing operators close to each other and near the data source,
that PowerStorm in exp-2A actually reduces latency by 4ms
and in exp-2B latency is increased but only by 2ms. On the
other hand, R-Storm is able to reduce energy consumption in
exp-2A by almost 3% in comparison to the Baseline as only
two nodes are employed (nc1, nano1) and nc1 is operated at
a lower power level since it is not fully utilized. However,
in exp-2B the energy consumption increases by 4.5% in
comparison to the Baseline. In terms of latency, the advertised
strength of R-Storm, we see that R-Storm reduces latency
by almost 6ms in exp-2A. However, for exp-2B we observe
that latency increases by 2.5ms which is due to the selection
process favoring two powerful nodes (nc1, agx1) that although
close to each other, these nodes are in the far-range network
that features high latency from the data source and hence, end
up penalizing any performance gains that could be gained.

Finally, for thoroughness we provide an overview of Power-
Storm behavior configured with different weights. Fig. 10 de-
picts for exp-2A the PowerStorm energy and latency compared
to the Baseline when the weight prioritization of the power
dimension varies in the range from 0 to 1. Specifically, when
the weight is configured to 0 then PowerStorm completely

Fig. 9. Scheduler Latency Comparison

Fig. 10. PowerStorm Configured with Different Weights for Power Dimension

ignores the power levels of the workers becoming a solely
performance-aware scheduler and when the weighting is fixed
at 1, PowerStorm completely ignores the resource and network
dimensions fixating only on worker power levels. From the
results we observe that the most utility gained (elbow point)
is over a weighting of 0.4 which is close to the configuration
(0.33) presented in exp-2A and exp-2B.

VII. RELATED WORK

The distributed processing landscape is large and diverse,
covering schedulers, query languages and fault-tolerance
among others. For brevity, this section focuses on schedulers
designed for optimizing geo-distributed stream processing in
Storm and how task scheduling grasps on various requirements
for edge and fog computing. We reiterate that the default
Storm Scheduler adopts a pseudo-random round-robin opera-
tor placement strategy to the worker nodes without exploiting
data locality and worker node resource heterogeneity [16].

To tackle resource heterogeneity, R-Storm [8] shapes the
placement challenge as a multi-dimensional knapsack problem
in an attempt to optimize throughput through task placement
when acknowledging the heterogeneity of worker nodes in
terms of compute and memory. The operator placement pro-
cess is performed offline making the broad assumption that
the underlying execution environment will not change for the
placement to remain relevant, where users must input CPU,
memory and bandwidth requirements which is not always
straightforward for a large and diverse set of worker nodes.



In turn, the T-Storm Scheduler [9] supports the application
of query operators over streaming settings by considering
the inter-node and inter-process traffic to assign workload to
the nodes, rather than the default approach adopted by the
Storm engine. Moreover, T-Storm does not require the use
of all worker nodes on the cluster and some may end up
not being used at all. Similarly, the TS-Storm Scheduler [22]
attempts to solve the inter-node imbalance problem by adopt-
ing a constraint-based optimization algorithm to dynamically
eliminate the performance bottleneck of the topology. Next,
the T3-Scheduler for Storm [7] puts focus on placing the
job’s tasks that communicate with each other on nodes that
are closer in terms of network distance. On a different note,
EQUALITY [10] is a framework that adopts a bi-objective op-
timization scheduling process that explores trade-offs between
performance and data quality to optimize streaming analytic
jobs in constraint edge computing settings.

The following can complement our work to further improve
energy efficiency for stream processing. Er-Stream [5] pro-
vides dynamic voltage scaling when the workload does not
overwhelm distributed processing to reduce the power level of
the workers and save energy without impacting performance.
Finally, SpanEdge [23] provides a programming toolkit that
enables users to specify parts of their streaming jobs that
need to be scheduled close to the data sources to reduce data
movement across wide-area networks.

VIII. CONCLUSIONS AND FUTURE DIRECTIONS

With the pressing need to move towards sustainable prac-
tices for large-scale computing, stream processing cannot be
the exception. Our work tackles energy-aware scheduling for
distributed stream processing so that a balance between per-
formance and energy-efficiency can be exploited. During the
placement, PowerStorm attempts to place adjacent operators
on the same worker and if not possible, on a worker close
by to reduce the network overhead. At the same time, if the
user-desired throughput settings permit, PowerStorm will favor
low-power workers so that energy savings can be exploited at
a fraction of a latency increment. Through a real-world use-
case scenario and the Yahoo benchmark suite run on physical
and emulated testbeds comprised of multiple edge devices with
different resource, network and energy constraints, we show
that PowerStorm can strike balance between performance and
energy savings. In our experimentation, energy consumption
is reduced by 16-43% with a slight increase in latency rang-
ing between 2-9ms when compared against the popular R-
Storm scheduler. Our future directions focus on supporting
edge micro-datacenters with multiple power sources (i.e.,
photovoltaic panels, energy grid) and the factoring of carbon
emissions in the decision-making and post-analysis.
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