5G-Slicer: An emulator for mobile IoT applications
deployed over 5G network slices

Moysis Symeonides*, Demetris Trihinas, George Pallis*, Marios D. Dikaiakos*,
Constantinos Psomast, Toannis Krikidis*

* Department of Computer Science
University of Cyprus
{msymeo03, gpallis, mdd}@cs.ucy.ac.cy

Abstract—5G is emerging as a key mobile network technology
offering Gbps transmission rates, lower communication latency,
and support for 10-100x more connected devices. The full ex-
ploitation of 5G relies on network slicing, a network virtualization
technique where operators split a physical network among a wide
number and variety of services, in accordance to their individual
needs. However, experimentation with 5G-enabled services and
measurement of key performance indicators (KPIs) over network
slices is extremely challenging as it requires the deployment
and coordination of numerous physical devices, including edge
and cloud resources. In this paper, we introduce 5G-Slicer; an
open and extensible framework for modeling and rapid experi-
mentation of 5G-enabled services via a scalable network slicing
emulator. Through modeling abstractions, our solution eases the
definition of 5G network slices, virtual and physical fog resources,
and the mobility of involved entities. With the blueprint of
an emulated testbed at hand, users can create reproducible
experiments to evaluate application functionality and KPIs by
injecting load, faults and even changing runtime configurations.
To show the wide applicability of 5G-Slicer, we introduce a
proof-of-concept use-case that encompasses different scenarios
for capacity management in a city-scale intelligent transportation
service. Evaluation results exploiting real 5G data show that 5G-
slicer presents, at most, an 11.7% deviation when comparing
actual and emulated network Quality of Service (QoS).

Index Terms—Network Slicing, Edge Computing, Mobility.

I. INTRODUCTION

The proliferation of Internet of Things (IoT) technologies
fosters a variety of novel application areas, like autonomous
drone swarms, connected vehicles and digital twins for in-
dustrial IoT. These applications typically present demanding
requirements, which require fast response times, and involve
numerous, heterogeneous mobile sensors inter-connected and
inter-weaved with both physical and virtual networks that cre-
ate unified cyber-physical planes [1]. However, the complexity
and cost of purchasing, deploying, and maintaining such
complex network fabrics are key inhibitors to the development
of delay-sensitive IoT applications [2]. Also, the rate at which
data are produced at the network edge further prevents the
adoption of such applications at a large-scale [3].

The 5th generation (5G) of mobile communication promises
to satisfy the pressing requirements of emerging IoT applica-
tions by offering a 1000x higher mobile data volume per unit
area and support for 10-100x more connected devices [4].

t Department of Computer Science
University of Nicosia
trihinas.d @unic.ac.cy

1 Department of Electrical and
Computer Engineering
University of Cyprus

{psomas, krikidis}@ucy.ac.cy

Network Slicing is a key innovation of 5G technology and has
the potential to provide the building block for reducing the cost
and complexity of managing large-scale IoT applications [5].
Network slicing facilitates the provision of multiple logical
networks on top of a physical network for Operators to rent
“slices” of their infrastructure, much similar to cloud providers
renting computing resources. These “slices” can be tailored to
address specific applications needs, through guarantees pro-
vided by the network Operator. However, ensuring QoS guar-
antees is hard, especially for applications with highly dynamic
characteristics. In the case of connected vehicles, connectivity
can change due to various factors, such as varying distance
to the closest radio unit, the appearance of physical obstacles,
and the choice of wireless protocol. In turn, compute-hungry
tasks may be offloaded to more powerful Multi-access Edge
Computing (MEC) servers during execution [6]. Finally, the
sharing of the underlying network infrastructure can result
in situations where slices on the same MEC compete for
insufficient computing and communication resources with un-
expected adverse effects on application behavior [7].

To cope with these challenges, service owners can either
purchase expensive, high-coverage slices with dense access
points and multiple MECs or design their slices to be capable
of handling highly volatile mobile workloads while maximiz-
ing network coverage. However, undertaking such a design
requires powerful tools that support extensive experimentation,
testing, and performance evaluation. These tools should cap-
ture accurately the key features of the underlying infrastructure
and the target application while supporting the easy configu-
ration of scenarios, generation of appropriate workloads, mon-
itoring of important metrics and KPIs. A common approach
that seeks to address these requirements, entails the combined
use of mobility and network simulators [8], [9]. This, however,
involves a steep learning curve of multiple tools and complex
configurations, which cannot be capitalized in the application
development life-cycle. Also, developers face difficulties when
trying to map the business logic of an IoT application to a
simulator design model, because simulators do not capture all
aspects of such complex infrastructures. So, for instance, a
developer must extract quantitative metrics from a small-scale
experiment and introduce these metrics in a simulator model

(Service-1)(Service-2] © © o [_Service-N] UPFs /

loT Application

/ Network Slice

User Plane

(software Defined Networks (SDNs) | Virtual Network F (VNFs) |

Control Plane

! N
- ! RU S
'7:@' 1 3
e
] 2
— o
Jcm (g) = ﬁ ﬁ g
1 : - 8
- Backhaul &=
mmWa\/eS RU Midhaul | €
Massive MIMO ;N cloud-native
Full-duplex
Beamforming ’
User Radio Access 5G Core
Equipment Network Network

Fig. 1: A High-Level Architectural Overview of a 5G Network

to drive more realistic simulation scenarios [6].

Emulators try to address these issues by mimicking the
actual environment where a real-world application is deployed
and runs [10]. However, emulators that focus on 5G infrastruc-
ture [11] or on mobility patterns [12] fail to support adequately
the concept of Network Slicing as: (i) they do not support key
features like Virtual Network Functions (VNFs) and (ii) lack
the means to scale the emulated execution environment to
large-scale application scenarios. To address these limitations,
we introduce 5G-Slicer, a framework that facilitates the em-
ulation of Network Slicing in the presence of large-scale
and mobile IoT applications. 5G-Slicer supports: (i) modeling
abstractions for network infrastructure, such as radio units,
MECs, mobile nodes, user equipment, and node trajectories;
(i) dynamic updates of radio network characteristics (i.e.,
signal strength) and respective network QoS, according to
the mobility patterns of end-nodes; and (iii) primitives for
describing user-plane VNFs, such as software firewalls, policy
enforcement enablers, and packet inspection. Users simply
describe the experimentation scenario, leaving to 5G-Slicer
its transformation into an emulated testbed. In summary, the
main contributions of this paper are:

« A comprehensive model that captures the key charac-
teristics of a 5G network slice along with the mobility
of network entities. The model’s expressivity enables
users to design and build complex 5G network slices,
encapsulating QoS definition, user-plane network func-
tions, physical components, such as access points and
base stations, physical nodes’ positioning and trajectories,
new network technologies (multi-user MIMO and beam-
forming), and virtualized MEC and Cloud resources.

« An open-source framework' that takes as input the slice
model and generates an experiment testbed, while also
offering extensible interfaces for dynamically altering at
runtime network QoS based on mobile node positioning.
5G-Slicer provides dynamic maps with real-time object
location updates to help users extract insights, visually
contrasting the changing locations of emulated nodes
against real-time application performance metrics.

I https://github.com/UCY-LINC-LAB/5G-Slicer

« A comprehensive evaluation of 5G-Slicer emulation
accuracy after comparison to real measurements obtained
from a 5G testbed for various settings and protocols. In
all configurations the emulation error is at most 11.7%.

« A proof-of-concept use-case, where 5G-Slicer is used
to explore a city-scale intelligent transportation service
based on real-world data. The use-case is reproducible
and highly configurable (e.g., density of access points,
edge servers, node mobility). Based on this, we perform
an extensive experimentation on many high-scale mobile
edge topologies with different characteristics and retrieve
insights for the performance of the topologies involved
(e.g. for capacity planning).

The rest of the paper is structured as follows: Section II
provides technological aspects for 5SG networks. Section III in-
troduces 5G-Slicer, with Section IV showcasing the modeling
abstractions and Section V implementation details. A detailed
evaluation is introduced in Section VI. Finally, Section VII
presents related work and Section VIII concludes the paper.

II. BACKGROUND

Compared to previous mobile network generations, 5G com-
bines physical layer improvements with emerging network vir-
tualization to enhance the connectivity and energy-efficiency
of any “thing” that stands to benefit from being connected [13].
Figure 1 depicts a high-level overview of a 5G network.
The physical infrastructure includes User Equipment (UE),
Radio Access Network (RAN), MEC nodes, and a cloud-
based Core Network. UE corresponds to any end-user device
that interacts with the network, such as phones, wearables
or embedded devices, connected vehicles, and even nodes
with enhanced computing capabilities (e.g., self-hosted edge
servers). UEs interact with the rest of the network through
high-performance communication protocols such as multi-user
massive MIMO. This increases system capacity and minimizes
UE-RAN network delay by combining a large number of
antennas along with the gains of increased bandwidth by
operating on the millimeter wave (mmWave) band [14].

The RAN is comprised of wireless base stations (gNodeB
or gNB) connecting UEs to the 5G core network. gNBs follow
the 5G disaggregation model [15], and can be assembled
into hierarchical structures, wherein each gNB may control
one or more Radio Units (RUs). RUs include antennas and
radio frequency circuits for voice and data transmission, along
with processing capabilities. RUs embrace beamforming, the
process used to produce narrow beams in the mmWave band
that can be controlled by the antenna to point to specific
directions. gNBs are connected with each other and with a
nearby MEC through midhaul connection; their internal struc-
ture is not visible to the core network and other RAN nodes.
This architecture aims at improving the network’s energy
efficiency by reducing centralized processing and consequently
reducing the Network Operators’ operational expenses [16].
The last infrastructure element is the cloud-native Network
Core (NC), where Operators deploy resource-demanding virtu-
alized network services. The communication between the RAN

and cloud is realized via backhaul connections, which have
significantly higher network latency than midhaul connections.

On top of physical infrastructure, a virtual layer is pro-
visioned and separated into control and user planes. This
separation enhances infrastructure management via the virtu-
alization and isolation of the underlying resources. Network
management relies on Network Function Virtualization (NFV)
and Software Defined Networks (SDNs) to provide a set of
standardized control plane functions and to decouple network
functions from the hardware. Hence, network operators have
the flexibility to (i) scale in/out services based on client
demands; (ii) decrease capital and operational expenditure via
virtualized components and ad-hoc infrastructures; (iii) mini-
mize time-to-market for new services and (iv) sell virtualized
end-to-end networks, the slices, to their customers [13].

With Network Slices (NS’s), a physical network is split
into multiple isolated logical networks of different size, struc-
ture, and functionality. Through NS, customers describe the
application, network, and infrastructure via human-readable
configurations. The Network Operator will strive to fulfill
the desired QoS for each NS, as described in a service
level agreement (SLA) [7]. Hence, the network infrastructure
can be decomposed to address the requirements of different
applications. For example, one slice can be dedicated to
mobile broadband applications that require high throughput,
while another slice can be dedicated to machine-to-machine
communications (M2M) that require high connection density.
A slice usually spans across all layers of a 5G network. In a
nutshell, it can be seen as a Software-Defined Network along
with a set of VNFs and user-defined services supported by
MECs. Based on the 3GPP specification, network functions on
a network slice are equivalent to User Plane Functions (UPFs)
that can be programmed for packet inspection, routing, and
traffic filtering [17]. To this end, the abstraction of NS provides
an end-to-end multi-service orchestration plane, eases network
programmability, and reduces the implementation efforts for
both providers and clients.

III. THE 5G-SLICER FRAMEWORK

This Section provides a high-level overview of 5G-Slicer
and elaborates on its functionality from a user perspective.

A. Requirements

In a typical example, a 5G-enabled application is deployed
on a rented network slice that abstracts the underlying network
infrastructure while adhering to well-defined SLAs. However,
with thousands of mobile nodes connected over the RAN,
developers cannot be sure if the given guarantees are sufficient
or even overly cautious. Thus, the following requirements must
be taken into consideration when designing an emulator for
mobile IoT applications deployed over 5G network slices:
R1. Cloud, MEC and UE modeling: the ability to deploy IoT
applications over virtualized resources on the Network Core,
nearby MECs, and/or on physical UE with these resources
featuring a diverse degree of heterogeneity.

Interactive Map &
Monitoring Metrics
a

=
Mobility Model @ /I\ Use-case @

Description Parameters A7

| Model vaiidator |

Use-case Templates

Generated Model

Topology & 3 Input Layer

Trajectories Models

Topology Builder

¢ p®®

Network Conceptual
Graph

(.| Trajectories Manager A

Step-wise
Lovetions Control Layer @r @
Updates
Emulated Application
Components

Emulator H
Connector
Execution Layer
Fig. 2: A High-Level and Abstract Overview of 5G-Slicer

R2. Virtualized Networks: the ability to design on-demand
network slices that are based on SDNs and are equipped with
VNFs, such as firewalls, routing schemes and usage limits.
R3. Geo-Positioning & Mobility: the ability to apply at
runtime ad-hoc and/or trajectory-based positioning changes to
mobile nodes that may impact connectivity and performance.
R4. Testbed Scalability: the emulation framework should
only be bounded by the resources reserved for the underlying
execution environment and when the resource pool expands,
so should the responsiveness of the emulator.
RS. Network Slice Monitoring: To assess the performance
of network slicing, real-time quantitative network metrics are
required, as well as packet-level inspection, resource observ-
ability, and even application behavior metrics.

B. Framework Overview

5G-Slicer is an emulation framework which seeks to enable
5G application developers to focus on the business logic of
their services instead of the whole communication stack when
trying to analyze application performance. Users of 5G-Slicer
need only to define the testbed configuration and test scenarios
via modeling abstractions, leaving to 5G-Slicer the burden of
the deployment, configuration, and monitoring of the emulated
execution environment of a 5G network slice. 5G-Slicer is
capable of orchestrating run-time changes to the positioning
of mobile nodes and, at the same time, updates the connectivity
(e.g., signal strength, data rate) of impacted entities.

Figure 2 depicts a high-level overview of the 5G-Slicer
components and their role in a typical use-case. The deploy-
ment of a typical experiment starts with a user describing
the application services and the 5G network via the model
specification (I) or by parameterizing a “ready-to-use” testbed
template (2. The description specifies capabilities of the
virtual and physical infrastructure wherein the application’s

Cloud-Native Core

RU
MIMO Ly
Antonins LT

Backhaul

RU & Edge
server

Data
Propagation
Withhold

Sa

Fig. 3: Smart Bus Network Use-Case Scenario

services reside and interact with, such as UEs, edge and
MEC servers, and cloud resources. The user can also define
the geo-positioning of the infrastructure and provide fixed
trajectory changes that will occur during the emulation or
more comprehensively, annotate mobile nodes with a trajectory
model that the node will adhere throughout the emulation.
Then, the user can define the network slices that the network
fabric will support. A network slice is abstracted as a virtual
overlay mesh that runs on top of the network infrastructure.
The user can also specify performance characteristics for
the connections between RAN nodes and the backhaul, and
the wireless connections between the RAN and UEs. For
the latter, users can experiment with alternative degradation
models, which specify how physical distance influences the
connectivity between RUs and mobile UEs (e.g. linear), and/or
with alternative wireless connection protocols (e.g. MIMO).
Finally, the user can optionally add VNFs to nodes, such as
firewalls, traffic filtering, packet inspection, etc. The modeling
specification is described in detail in Section IV.

If a user is interested in evaluating the performance of a 5G
environment with certain settings, 5G-Slicer provides a repos-
itory with easily configurable and “ready-to-use” templates.
A template enables the rapid deployment of a 5G application
with the infrastructure, entity mobility and monitoring already
set. Users can configure the use-case via a set of parameteriz-
able configurations, such as the number of entities (i.e., mobile
nodes, MECs), their density, the type and connectivity QoS of
the mobile networks, and the deployed services. To further
facilitate the design of large-scale infrastructure descriptions,
5G-Slicer provides programming primitives that establish a
programmable view of the model.

When the description is complete (3), the system submits the
description to the Topology Builder. The role of the Topology
Builder () is to assess the model validity and to compile it into
a Network Conceptual Graph. To achieve this, the Topology
Builder extracts from the given description the network slice
specification (i.e., wireless protocol, QoS of RAN nodes) and
any signal degradation models defined during the modeling
process. With these, the deployment will invoke three sub-
modules: (i) Antenna Selection: this evaluates if a mobile
node can reach a network and selects the RUs to connect;
(i1) Distance-to-QoS process: this assigns network QoS to
the respective links; and (iii) Handshake Algorithm, which
introduces additional delay when a moving node connects to
new RUs. The output of this process is a Network Conceptual
Graph (5 that contains the aforementioned information and

Services Nodes Slices
bus-workload mobile-slice-1
cloud-svc VM-cloud-1 mobile-slice-2
l edge-svc l l VM-edge-1] e z
h LY S~
1 s
1 AN name: VM-edge-1 @
. processor:
services: @ AN cores: 4
edge-svc: . clock_speed: 2.4GHz
image: edge_svc:latest AN memory: 8GB
environment: A disk:
param1: test AN type: SSD
...... * | size: 64GB

Fig. 4: Building blocks of Smart Bus Network Scenario

will be used by the system for the runtime state propagation
during the experimentation. The nodes of the graph that
represent network and compute devices are annotated with
information about their capabilities and deployed services.
Edges denote the links between the nodes. The weight of each
edge is determined by a set of network QoS parameters, such
as data rate, network delay, packet error rate, etc.

With the conceptual graph in hand, 5G-Slicer proceeds
with the construction of the emulated execution environment.
Specifically, 5G-Slicer invokes the Emulator Connector (6)
that interconnects the conceptual graph with the underlying
emulation environment. Its responsibilities include spawning
the emulated instances, configuring the network QoS param-
eters between them, enforcement of any run-time actions
and mobile node trajectory updates. Through the Emulator
Connector, monitoring data is extracted from the execution
environment and the conceptual graph is updated with new
state context (7). All ad-hoc changes to the geo-positioning
of mobile nodes is handled by the Trajectory Manager (3).
Hence, the role of the Trajectory Manager, is to orchestrate
“in-time” location updates for mobile nodes. When a location
update occurs, the Trajectory Manager populates the change to
the conceptual graph, and, consequently, the system automat-
ically propagates any changes to the execution environment.

The final step of the process is the performance analysis
and visualization of the emulation results. The framework
facilitates this by interacting with the conceptual graph and
generating an Interactive Map along with a set of repre-
sentative visuals from the Monitoring Metrics Q). A user
can then extract useful analytic insights for capacity and cost
management, network KPI assessment, SLA violations, etc.

IV. MODEL DESCRIPTION

The 5G-Slicer model introduces an end-to-end network
slicing description along with positioning and mobility prim-
itives. Specifically, the model is composed of: (i) Services,
facilitating the description of 5G-enabled services; (ii) Nodes,
introducing virtual and physical compute resources; (iii) Net-
work Slices, indicating network infrastructure characteristics;
(iv) the Deployment, specifying the placement of the services,
and physical positioning; and (v) Move Actions & Trajectories,
which denote runtime alterations of UE positioning.

To ease the understanding of the model concepts, let us
consider an exemplary use-case of a Bus Operator that equips

its fleet with IoT devices for real-time tracking, in an attempt
to optimize the quality of offered services. In Figure 3, IoTs
gather data, such as bus location, operating area, route delay,
and periodically propagate collected data through the radio
network of a purchased 5G network slice. If an RU is in the
vicinity of the bus, then data is propagated through it to the
nearest MEC for pre-processing, otherwise the data is stored
on IoT memory until it reconnects to the network. After data
pre-processing, the data is propagated to the Bus Operator’s
cloud for persistent storage and offline data analysis.

A. Services & Nodes

A Service in 5G-Slicer is a containerized, independently
deployable, and scalable software component that represents
application business logic on top of a 5G network slice.
Furthermore, a Service can be an IoT data generator that the
developer utilizes to stress the deployed application (e.g., the
bus workload service in Figure 4 (1)). We adopt containers
as the key abstraction for defining and deploying application
workloads on 5G-Slicer, because of their power, simplicity,
and wide use with popular cloud application patterns such
as microservices [10]. 5G-Slicer Services are inherited from
the docker-compose specification,to ease the deployment de-
scription of application services. On the other hand, a Node
can be seen as a constrained compute entity of the emulated
execution environment and can be described with attributes
such as the node name, identifier, etc. Most importantly, a
node can be annotated with processing capabilities, including,
processor power, memory, and disk capacity. For instance, the
VM with name VM-edge-1 (Figure 4 (2)) is equipped with 4
cores@2.4GHz, 8GB RAM, and 64GB SSD disk.

B. Network Slice & Connection Types

A network slice (Figure 5 (1)) is described by: (i) name (and
identifier); (ii) midhaul QoS, connectivity between RUs and
Edge; (iii) backhaul QoS, connectivity between RUs and Edge
to the 5G-enabled services; (iv) the wireless connection type,
which specifies the technological aspects of the connectivity
between the UE and RU; (v) a set of VNFs; and (vi) a set of
RUs. The midhaul and backhaul connections, unless otherwise
stated, have stable and guaranteed QoS, including data rate,
network delay and packet error rate.

A slice description is annotated with VNFs, which are
equivalent with user plane functions in a 5G slice. In Figure 5
(D, mobile-slice-1 features a set of VNFs. In this, 5G-Slicer
will capture measurements for in- and out-going packets using
the packet-monitoring property set. Furthermore, our model
provides users with the ability to apply firewall rules, such as
packet drop or redirect, which can be specified on protocols,
ports, other emulated nodes, or even external IPs. Hence,
mobile-slice-1 includes a rule to DROP all TCP packets
coming from the UE-workload service to port 8080. Finally,
in a network slice, users can form their own traffic policies to
reduce overheads or to manipulate the service performance. In
Figure 5 (D), the traffic policy primitive is used to limit the
data rate of UDP packets in the slice to 100M bps.

- name: mobile-slice-1 wireless_connection_type: step-wise

network_type: slice parameters:
midhaul_QoS: @ zones: @
latency: - radius: '0.2km’
delay: 3ms QosS:
deviation: 1ms latency:
data_rate: 1000Mbps delay: 3ms

backhaul_QoS:
latency:

deviation: 1ms
data_rate: 1000Mbps

delay: 30ms - radius: '0.5km’
deviation: 3ms QoS:
data_rate: 100Mbps latency:
wireless_connection_type: delay: 5ms

deviation: 1ms
data_rate: 1000Mbps
error_rate: 1%
- radius: '0.75km'
QosS:

<degradation_function> or
<wireless_protocol>
parameters:...
network_functions:
packet-monitoring: enabled
firewall_rules:
- type: DROP
protocol: TCP
from: UE-workload
to_port: 8080
traffic_policy:
protocol: UDP
data_rate: 100Mbps
RUs:
- lat: 52.5291988
lon: 13.3794752
alt: 50
- lat: 52.5292461
lon: 13.3786919
alt: 48

wireless_connection_type: MIMO

parameters:
transmit_power: 30dBm
carrier_frequency: 28GHz
bandwidth: 100MHz
noise_figure: 7.8dB
RU_antennas_gain: 8dBi
UE_antennas_gain: 3dBi @
maximum_bitrate: 538.71Mbps
minmum_bitrate: 53.87Mbps
queuing_delay: 2ms
RU_antennas: 8
UE_antennas: 4
propagation_loss_function: Friis

Fig. 5: Exemplary Network Slice & Connection Descriptions

Contrary to midhaul and backhaul, the QoS of wireless
connections is not fixed. The distance between the transmitter
and receiver is a dynamic parameter influencing signal strength
and consequently the QoS of a wireless channel. To support
distance-based computation of QoS, 5G-Slicer supports math-
ematical degradation models, i.e., linear, logarithmic, and step-
wise, that users can parameterize with slight effort. Figure 5 Q)
depicts a step-wise approach, where the user defines 3 stages:
(1) 0 to 200m, the network delay is set to 3ms and the data
rate 1000M bps; (ii) 200 to 500m, these parameters are now
5ms and 1000M bps, with an error rate of 1%; and (iii) 500
to 750m, the connectivity is characterized by 10ms delay,
750Mbps data rate, and 2% error rate. Each mathematical
model takes different parameters, which can be set by the
user. For instance, for the linear and logarithmic formula the
user can define the maximum distance (radius) a mobile node
can be reached by a RU, the best and worst QoS attained, etc.,
whereas for the static model the user needs to define flat QoS
values attained when the UE is in the RU’s reach.

Alternatively to the degradation models, 5G-Slicer supports
the enablement of realistic wireless physical effects for well-
known 5G protocols like multi-user MIMO and Beamforming.
Figure 5 (3) depicts the configuration of a RAN adopting multi-
user MIMO for its RUs. This simply requires the annotation
of the description with the RU transmission power, frequency,
UE and RU antennas gains, max and min bit rates, propagation
loss function, and antenna elements for both UE and RU. At
run-time, the system uses the parameters and “translates” the
UE-RU distance to respective network QoS.

C. Deployment Description

Figure 6 introduces the Deployment primitive that realizes
the placement of the emulated 5G-enabled services on top
of one or more network slices. A Deployment is a set of
Blueprints that are described by the user to realize the service

Deployment

cloud-server basestation-server UE-bus-1
label: UE-bus-1 :
service: bus-workload |:
node: mobile-node

networks:

i | label: cloud-server
i | service: cloud-svc
i | node: cloud-node

! | networks:

label: edge-svc
service: edge-svc
node: VM-edge-1
networks:

1 | - name: mobile-slice-1 - name: mobile-slice-1 - mobile-slice-1

i | location: Cloud location: location:

: type: edge lat: 52.51263
edge-server lat: 52.5292461 lon: 13.38948

: lon: 13.3786919 alt: 0

: | label: edge-svc alt: 15

| | service: edge-svc
! | node: VM-edge-1
i | networks:

UE-server UE-bus-2
i - mobile-slice-1 UE-bus-3
! Llocation: Edge :

Fig. 6: Exemplary Deployment Description

placement on the network slice. A Blueprint combines: (i) a
Node that will execute the service, (ii) the respective Service
that is defined in a docker-compose file, (iii) a set of Networks,
which denote the different slices that a node is connected to,
(iv) a label that works as unique identifier for the system,
and (vi) the location primitive. The location can be either the
physical geographic location of a node or a virtual location.
The geographic position of the node contains the latitude (lat),
longitude (lon), and altitude (alf), while virtual locations are
characterized by the Edge and Cloud type. When a node is
placed in the Cloud or on the Edge, its connectivity QoS are
inherited from the slice Backhaul and Midhaul, respectively.
Except from the physical nodes, virtual nodes can also have a
geographical location only if it is the same as a RU location
that the aforementioned service will be deployed with. For
instance, Figure 6 illustrates a server that will be deployed
along a RU with coordinates (52.5292461, 13.3786919, 15).

D. Mobile Node Geo-Positioning and Trajectory Updating

Up to this point, the modeling introduces all necessary ab-
stractions for the emulation of the execution environment and
networking, but considers a fixed positioning for all entities.
However, in today’s 5G era, network entities (i.e., connected
vehicles) are not fixed and rather move across the area of
operation. To overcome this limitation, 5G-Slicer enables users
to annotate the description of a Node with position updates
that will be realised during emulation. Towards this, users can
annotate the description of a (mobile) Node with a trajectory.
A trajectory is a timestamped list of geo-locations across the
emulated spatial plane. Hence, the model considers that the
continuous movement of a mobile node can be split into
discrete timestamped location updates.

Upon execution, 5G-Slicer will apply for each step in the
trajectory a Move action, that takes as input the mobile node
and the new destination. 5G-Slicer instantly transfers the given
node and updates the QoS of the node’s network connectivity.
Figure 7 depicts a hypothetical trajectory for UE-bus-1 of
the running example, where S5s in the scenario, 5G-Slicer
will “move” the bus to the geo-location with coordinates
(52.51263,13.38948,0). At this point, the node connectivity
is updated by invoking the distance-to-QoS process and,
hence, the bus data transfer rate may be (significantly) altered.
Similarly, Ss later, a new move action is invoked and the bus

trajectories:
- label: UE-bus-1
timestamp: 5s

order: 0
parameters:
lat: 52.51263
lon: 13.38948
alt: 0
- label: UE-bus-1
timestamp: 5s
order: 1
parameters:
lat: 52.52345
lon: 13.39190

alt: 0
- label: UE-bus-1
timestamp: 5s
order: 2
parameters:
lat: 52.53413
lon: 13.39190
alt: 0

Fig. 7: Mobile Node Description Annotated with Trajectory

changes location, again. Nonetheless, annotating thousands of
nodes with numerous positioning updates requires significant
manual effort. 5G-Slicer also provides users with the ability to
annotate a node with a trajectory model that will dynamically
derive the geo-positioning of a node at runtime based on
collected monitoring data.

V. IMPLEMENTATION DETAILS
A. The Network Conceptual Graph (NCG)

The NCG is an in-memory undirected graph capturing
a valid snapshot of the topology during execution. Upon
deployment, the Topology Builder introduces every physical
and virtual component, as a node in the graph. Each node
is annotated with a name, type (network or compute), and
optional key-value properties. RUs take the network node type
if they lack the ability to perform compute tasks. In contrast,
compute nodes (e.g., UE, VMs hosted on MECs), have an
identifier for the model blueprint, and node properties can
include information provided by the user during the modeling,
such as CPU power, core count, memory size, running service
name, etc. Network functions, such as packet-level inspection,
firewall rules, and traffic policies, can also be attached to a
node. The graph edges denote network connections between
nodes. For stationary nodes, such as RUs or edge servers,
the model provides permanent connectivity, via midhaul or
backhaul. These nodes, construct a fully connected Network
Core. For mobile nodes, the system produces a list of the
RUs when the node falls within their coverage, sorted by the
(network) distance to reach each RU. The RU coverage is equal
to its radius, as defined in the model description or generated
based on the physical characteristics of a network protocol.

The Topology Builder populates the generated network QoS
parameters originating from the physical layer along with the
VNFs to the created edges. Then, the system triggers the map-
ping and submission process of the topology to the underlying
emulation framework primitives. During the experimentation,
changing the position of a mobile node does not require the
reconstruction of the entire graph but only the connectivity
properties of the moving node. Every change to the graph
enforces the update of the running emulated infrastructure.
Furthermore, the system periodically saves snapshots of the
graph. If there is an error (or the user would like to restore
the state of a topology), the system will load a stored snapshot

and roll back the whole infrastructure to the saved state. The
NCG is not only a high-performance structure for keeping
topological information, but can also be enriched with real-
time metrics from the underlying emulation. This supports
a wide range of functions for investigating the structure and
dynamics of both networks and applications.

B. QoS for the Graph Edges

The graph edges annotation with QoS updates starts with the
midhaul and backhaul links. The system introduces backhaul
QoS on the edges between the Cloud nodes and the rest of
the network, and midhaul QoS on the edges among the RUs
and MECs. The QoS values are provided during the modeling,
and as previously mentioned, are considered relatively stable.
Next, the system annotates the edges between the RUs and
the UE. As previously described, the system provides two
model types for UE-to-RU connectivity, namely, the math-
based degradation models and physical wireless protocols (i.e.,
MIMO). The QoS annotation based on degradation models is
straight-forward meaning that the system invokes the selected
model, passes the UE-to-RU distance as an independent vari-
able, and the model returns the respective QoS.

For wireless channels, we have implemented a proof-of-
concept methodology for multi-user MIMO and beamforming
systems. Initially, we investigate how distance affects the
signal quality and utilize Propagation Loss models to compute
receiver signal power by considering the signal power of the
transmitter and the antennas’ receiver and transmitter posi-
tions. Since the formulas of the propagation models are widely
used in network simulations, we embrace the propagation
models from NS3 [18], which features more than 15 different
models, such as Free Space Loss (Friis), Log Distance Prop-
agation, and Three Log Distance Propagation. We set Friis
as the default propagation loss model of the implementation,
considering it as the most generic and representative model for
IoT scenarios (i.e., smart-city, UAVs). With this, the system
computes the receiver power (F,) of a mobile node as follows:

P.=P+G+G,—L (D

where P; is the transmitter output power, G is the gain of the
transmitter’s antenna, G, is the gain of the receiver’s antenna
and L represents the path loss. Every parameter is measured
in dB. Next, we calculate the signal-to-noise ratio (SNR):

SNR[dB] = P, - N)

where N is the noise in dB, which is calculated via the power
spectral density theorem:

N = Ng x B, where No =k xT 3)

Ny is the thermal noise, calculated as the multiplication of
Boltzmann’s constant (k = 1.38 x 10723), and the temperature
of the receiver system (7)) in Kelvin. So the noise [V is equal to
Ny multiplied by the bandwidth (B) of the respective channel.
For typical temperatures, the noise in dB can be calculated
with the following equation:

N[dB] = —174 + 101log,,(B) “)

Topology & ‘L
Trajectories Models

v

Topology Builder

A ' o OO ®

G Trajectories Manager I—} Network Conceptual Graph

Fogify
Connector —

5G-slicer Control Layer

Fogify Controller
[Controller] [Orchestrator Connector][API]

¢| Conlfig Files

[Cluster Orchestrator

Cluster Node] [Cluster Node
[Overlay Networks]

5G-Slicer
Enabled Agent 1

Emulated Nodes Emulated Nodes JR

Workload Workload
Generators Generators

Network QoS & | ||}
VNFs Module 1

I Emulation |
A

Other Fogify's
Modules

| 5G-Slicer Cluster

Fig. 8: 5G-Slicer and Fogify Integration Overview

Having the computed SNR, the system needs to calculate the
respective high-level network QoS. We calculate the data rate
by utilizing the Shannon-Hartley theorem for each device;
thus, the spectral efficiency is:

C; = min(N;, N,) x B x log,(1 + SNR;) (5)

where C; is the expected capacity of the channel between the
i-th device and the base-station, given the channel bandwidth
B in Hz, N; the number of transmitter’s antennas, and NV, the
number of receiver’s antennas. Taking into account a typical
multiuser MIMO (Figure 3), where the RU is implemented
with N antennas, and serves M concurrent devices with every
device to have k; antennas, we conclude to the following:

M
min(Ny, N;) = ki, if N>k (6)
i=1

If the devices exceed the capacity of IV station’s antennas, a
new device can be connected to a near-by base station, if it is

possible; otherwise, the devices will not be connected.
Additionally, for the packet error rate (PER), we utilize
the NS3 models. NS3 provides a wide range of error rate
models tailored for specific protocols, such as the direct-
sequence spread spectrum (DSSS) model. The error models
of the system take as input only the protocol specification
spectrum and the calculated SNR, and return the packet error
rate as a percentage. Moreover, we apply an additional small
network delay (e.g. 1ms) to provide a fronthaul network effect
(links among RAN components). Finally, 5G-Slicer proceeds
with the annotation of the respective RU-to-UE graph edges.

C. Integration with Fogify Emulation Framework

With the annotation process completed, the Emulator Con-
nector translates the conceptual graph into an emulated ex-
ecution runtime. For the current version of 5G-Slicer, the

Emulator Connector interface is implemented for Fogify, a
scalable emulator with modeling abstractions for the underly-
ing fog offerings of IoT microservices [10]. We selected Fogify
because it can facilitate the scalable emulation of distributed
computing with support for software-defined networking and
run-time ad-hoc alterations to both the emulated instances and
the experiment configuration. Figure 8 depicts the integration
with Fogify. Initially, the Connector translates the conceptual
graph into the modeling primitives of Fogify and submits them
to Fogify’s APL To do so, we created a set of functions that
programmatically build the Fogify model, perform the submis-
sion of it, apply ad-hoc emulation changes, and manipulate the
whole execution. When Fogify receives the model description,
if no error is discovered, translates the model specification to
the underlying orchestration primitives. Then, it deploys them
via the Cluster Orchestrator, ensuring the instantiation of the
containerized services on the emulated environment.

Located on every cluster node, Fogify Agents expose an
API to accept requests from the Fogify Controller, apply
network QoS primitives, and monitor the emulated devices.
We overrode Fogify’s network QoS enforcement mechanisms
to be 5G-Slicer-enabled, encapsulating fine-grained link QoS
variability, VNFs, and packet-level monitoring (SectionV-D).
What is more, on a running deployment, Fogify permits users
and programs to perform Actions and “what-if” Scenarios
(sequences of timestamped actions) on their IoT services, such
as ad-hoc faults and topology changes. When an Action or a
Scenario is submitted, Fogify coordinates its execution with
the Cluster Orchestrator and the respective agents. 5G-Slicer
takes advantage of this functionality to enforce connectivity
changes that arise due to the movement of emulated UE
entities. When a mobile entity changes its position, 5SG-Slicer
calculates the alteration of its connection and enforces the
respective action to the emulated topology. Finally, 5G-Slicer
utilizes the Fogify monitoring system to retrieve performance
and app-level metrics from running emulated deployments.

D. Enforcement of the QoS & VNFs

A more detailed view of the network QoS & VNFs Module
of Figure 8 is provided in Figure 9. To realize the interconnec-
tion between emulated nodes, we rely on Fogify’s approach
that utilizes the VXLAN [19] protocol. Specifically, every
network slice is realized as a software-defined overlay mesh
network. On every physical host, the system creates a new
network namespace, which is composed of an isolated virtual
network stack and a virtual bridge. On the virtual bridge
the VXLAN tunnel endpoint is connected along with every
local emulated node. The nodes communicate with each other
locally, through the bridge, or with nodes located on other
hosts via VXLAN tunneling. To connect an emulated node
to the bridge, the emulator instantiates a virtualized Ethernet
adapter (veth) in the VXLAN’s namespace and connects it to
the virtual bridge. The veth is mapped to an ethernet endpoint
inside the container. Then, we introduce 5G-Slicer’s mecha-
nisms for firewall rules, packet inspection & monitoring, and

Al packets

Redirect
Evaluate Rules Rules

Drop Packet Drop

Host B
Rules
edirect Packet,

Container
A

Inspection

Host A

Container A Container B
eth0 eth0

packet to monitor
unpack In memory system

Ingress

i Network
1 Namespace

Ingress
QoS

Tree

Default
Engress
QoS

Engress
QoS for
10.0.0.1

Engress.
QoS for
10.0.0.2

nsenter -t container_process_id \
tc qdisc add dev queue_id root \
netem delay 5ms 1ms \
distribution normal rate 5kbit

=— VXLAN Tunnel
= = = Physical Connection
5G-Slicer components

Data Rate for Data Rate for
packets at 8080 UDP packets

Fig. 9: 5G-Slicer-enabled network QoS and VNF module

fine-grained network QoS enforcement to offer the required
functionalities of VNFs, as virtualized UPFs of a slice.

Specifically, when a packet reaches the ethernet endpoint
of an emulated node, the 5G-Slicer enabled agent applies the
firewall rules provided by the user at the modeling phase.
The system has already disseminated the rules to the agents,
and the agents utilize the Linux kernel iptables when a new
emulated node is instantiated. The Linux kernel processes
incoming packets and evaluates, sequentially, every rule in the
iptables ruleset (a set of respective firewall rules). If the packet
matches the criteria of a rule the Linux kernel decides whether
to ACCEPT, REDIRECT or DROP the packet.

If a packet passes the firewall rules, then it travels through
the packet inspection module. Since packet inspection is
resource-consuming, we allow users to disable this function-
ality on selected nodes. For packet inspection, the agent starts
a new packet processing thread for the respective emulated
node. This thread captures every packet and unpacks it to
a vector <source IP, source port, destination IP, destination
port, protocol, size, timestamp>>. Then it publishes the vector
into an in-memory thread-safe queue. To minimize both the
performance overhead and the size of the stored data, the agent
periodically exports vectors, summarizes them into time-range
groups, and stores them into the Fogify data store.

After packet inspection, the system continues with traffic
shaping. The agent instantiates an intermediate functional
block device (ibf interface), which is employed to separate
and redirect the egress and ingress traffic. Next, it enforces
the network QoS by building a tree-based structure of packet
filters that steers the packet flow to the respective network
QoS queue. To build the tree-like structure, through classful
queuing disciplines (qdisc)’. The tree root is a network in-
terface, virtual or physical, that the traffic reaches. Nodes are
class filters and leaves represent different QoS queues. Every
tree entity has a unique identifier, which helps the system to
select and apply filtering and QoS to specific nodes and leaves,
respectively. The traffic traverses the tree nodes by following
the packet filtering, and, in the end, reaches a leaf of the tree.
Every leaf assigns the arrived packages to a network queue

2 http://linux.die.net/man/8/tc

flat logarithmic flat logarithmic

——
500 500 I 12 N 12
. T
7 40 a0 | 10 4% 10 —
£ A n el
< 00 001 % Es 8 P
2 \ 8s s /
© 200 200 \\ 5 y
2, !

g > 5 Ot
a 100 100 ‘*—‘,_"7 . 2 2 I‘

0 0 o L

0
0 50 100 150 [} S0 100 150 0 0 100 150 0 S0 100 150
Distance (m)

Fig. 10: Flat and logarithmic Network QoS

Distance (m)

Parameter value
Carrier frequency (GHz) 28
RU signal bandwidth (MHz) 100
Transmit power (dBm) 30
UE noise figure (dB) 7.8
RU MIMO antenna array config 8x8
UE MIMO antenna array config. 4x4
MIMO RU antenna element gain (dBi) 6
MIMO UE antenna element gain (dBi) 6
Min SISO bitrate (Mbit/s) 53.87
Max SISO bitrate (Mbit/s) 538.71

TABLE I: Parameters of the Experiment

with the desired QoS characteristics by utilizing the Linux
NetEm?. At this point, the filtering provided by the system is
performed only on the level of a packet IPs without taking
into account more fine-grained filter policies, such as QoS
policies for specific protocols, ports, etc. To overcome this
limitation, we extended the tree-based structure with one extra
level of user function plane policies. Thus, if the user has
selected to apply an extra policy, the 5G-slicer enabled agent
creates an extra tree leaf node where it redirects packets that
are compliant with the respective policy.

VI. EVALUATION

This section provides a comprehensive evaluation of the
5G-Slicer feature set. Initially, experiments are performed to
evaluate the realism of 5G-Slicer to apply network QoS by us-
ing mathematical models and the MIMO wireless protocol for
signal degradation. Furthermore, we evaluate the applicability
of VNFs and packet-level monitoring. Next, we introduce
a city-scale scenario of an application utilizing real-world
data. The scenario is realized through 5G-Slicer programming
primitives and is exported as a reusable template. Finally,
based on this scenario, we evaluate the scalability of 5G-Slicer
in terms of network and compute resources.

A. Radio Connection Models & VNF Enforcement

1) Radio Connection Models: Initially, we investigate how
5G-Slicer applies different connectivity models between the
RU and UE. We utilize iperf3* and Linux ping’ to measure the
network data rate and latency. For thoroughness, we present
the mean of 5 bandwidth trials, and ping measurements for 500
intervals. Starting with the mathematical models, we examine
the results of distinct functions, namely flat and logarithmic.
We set the radius of the RU signal coverage to 150m. Figure 10
depicts the data rate and latency for the functions with different
distances between the RU and a UE. One clearly observes that
the measurements follow the enforced mathematical functions.
With a more detailed view of the results, we can see that the
3 http://linux.org/docs/man8/tc-netem.html 4 http://iperf.fr/iperf-doc.php
5 http://linux.die.net/man/8/ping

B00 1 x % %t P=33dBm
— x X
% L
g_‘m X %
S 00 + Real
~ X Emulated
L2 0
g 600 I I I
© P{=23dBm
@ 400 43¢ ®
[m)] x X ® % X 4
200 Real x
¥ Emulated

JUIU lll.ﬂ 12IU 13ICI 14Iﬂ 15ICI 16Iﬂ
Distance (m)
Fig. 11: Comparison of Real & Emulated connectivity

values for the emulated data rate presents a deviation of at most
5%. This is in line with the findings of the Fogify paper [10]
where the data rate experienced a 3-5% overhead due to the
additional virtualization layer in the network stack.

2) Emulation Realism: To evaluate 5G-Slicer emulation
accuracy, we used data-rate measurements provided by the
operators of a 5G testbed installation [20], [21]. The testbed
captures data rate measurements for gNB-to-UE connectivity
in a mixed landscape for various distances (100 to 165m).
The testbed features a LimeNET 5G-SA BTS and Huawei
P40 Pro that are used as the gNB and UE, respectively. The
connectivity is achieved via a 100MHz band channel operating
at 3489.42 MHz with a MIMO 2x2 configuration. The RU was
set to transmit with two transition power configurations (),
namely 23dBm and 33dBm. The antenna gain for the gNB is
15.3dBi and the noise figure is 7dB when the RU operates at
23dBm and 16dB when the RU functions at 33dBm (manu-
facturer reference values). Figure 11 illustrates the measured
data rate for the real and emulated deployments. From this,
we observe that the 5G-Slicer results follow the distribution of
the real testbed with the mean absolute percentage error being
11.7% for 23dBm and 5.3% for the 33dBm configuration.
These modest error rates are observed even with the presence
of outliers in the real measurements. Specifically, there is a
significant deviation between the real and emulated measure-
ments at 125m for both configurations. This is attributed to
the positioning of the UE, where for this particular distance
a physical obstacle is influencing the quality of the data
rate. This is reasonable because the theoretical models do not
consider obstacles, ambient noise, signal inflections, etc., that
can influence signal quality.

Next, we evaluate the performance of embracing the MIMO
wireless protocol in different configurations. Since these mod-
els have a static network and modest network delay, we focus
only on the bandwidth. Table I depicts the maximum and
minimum bit-rate, with these values fully compliant with the
3GPP guidelines for network slicing [17], [22]. For the one-
way network latency (including system delay), we set the min-
imum and maximum values to 0.1ms and 5ms, respectively.
We start the evaluation from a simple 1x1 SISO (single-input-
single-output) channel, and we continue with 8x2, 8x4, 8x6,
and 8x8 antenna configurations. In Figure 12 (left), we see the
performance for the antenna configurations for different RU-
to-UE distances. The results are in respect to equations (5) and
(6), where, for instance, the capacity of the 8x2 configuration

SISO

MIMO{8x2)
= MIMO[8xd)
== MIMO[8xE)
—+— MIMO(8x8)

=1
=
2

Data Rate (Mbps)
g
2

._.
=
=
=

=

20 40 &0 Bx2 Bxd 86

Distance (m) Antenna Elements

Fig. 12: Measure Bandwidth for SISO & MIMO channels

SISO Bx8

800
—— without filter
200 -— filtered
z
o400 \—_/
©
o

) 1B
Intervals

Fig. 13: Traffic With and Without Packet Filtering

is twice as large as the SISO channel. Figure 12 (right) depicts
the average error between the measured and computed values.
The error follows the bandwidth size, with the SISO channel
having the least difference between enforced and observed
bandwidth, contrary to the 8x8 configuration, with the maxi-
mum bandwidth fluctuation. Still, the percentage difference is
less than 6% in every case. To this end, 5G-Slicer correctly
computes the radio QoS by following the mathematical or
theoretical models, but the underlying emulation framework
plays a significant role in their precise enforcement.

3) VNF Application: For this experiment, we deploy an ob-
ject classification service (YOLOv3®) on an emulated instance
with 4 cores@2GHz and 4GB RAM. A simple workload
generator (client) is created to disseminate sample images
every 5 seconds to the deployed service through a 5G slice.
We run the experiment twice for 6 minutes, once with the
default configurations (Table I), and once with network-level
packet filtering enabled. For the latter, we filter all packets
reaching the port 8080. In both tests, we enable the packet level
monitoring and set the periodicity to be 15 seconds. Hence,
we evaluate both the packet level monitoring and enforcement
of VNFs. Figure 13 depicts the number of packets that are
transmitted from the client to the classification service. We
see that when the filtering is applied, the transmitted packets
are almost zero. There are only a few packets streamed from
the client for the initial HTTP request handshake process.
However, since the packets do not reach the service, the
service does not respond. In detail, 3.8M packets reached the
server and 200k packets reached the client without filtering.
On the contrary, only 660 packets reached the server and 0O the
client when the filtering is enabled. In conclusion, 5G-Slicer is
capable of applying both the described VNF and packet-level
monitoring on an emulated 5G slice.

B. ITS Operator Use-Case

This section showcases the usability of 5G-Slicer along
with a representative benchmark analysis that reveals hidden
insights for a mobility-aware IoT application. Let us consider

6 https://pjreddie.com/darknet/yolo/

10

Fig. 14: 5G-Slicer Interactive Map

a scenario with a bus company that intends to analyze real-
time data from its fleet to provide better services for on-
time bus arrivals (Figure 3). For this, the company does not
deploy its own infrastructure but rather leases a 5G network
slice from a Network Operator. The company purchases GPS
tracking devices and creates a service to periodically send data
from buses to an Intelligent Transportation Service (ITS). The
ITS consists of two components, namely, an edge service that
captures and generates neighbor-range analytics, and a cloud
service that produces overall analytic results. As an exemplary
analytic query, consider the mean delay of all buses for the last
5 minutes. The entities of the experiment are the following:
o IoT device: reproduces the data generated by each bus,
simulating the IoT data dispatch to the nearest MEC. If
the IoT device is not in the range of any RU, it stores the
data until re-connected to the network. Every generator
produces a static rate of 10 reqg/sec. loT device is emulated
with 1 core@500MHz and 512MB RAM;
MEC Server: stores the incoming data, computes area-
based analytics, and forwards the results to the centralized
server. It provides 4 cores@1.4GHz and 4GB RAM.
Centralized Server: is placed in the Network Core,
gathers partial data, and calculates the final results. The
centralized server has 4 cores@2.4GHz and 4GB RAM.
Radio Units: we consider the parameters from Table I to
emulate the radio access connectivity.
Regarding the implementation of the use-case, we utilize the
programming primitives provided by 5G-Slicer, and we realize
the use-case as an extension of the use-case templates inter-
face. Specifically, we use the real-world open-access dataset
from Dublin’s bus traces 7, and bus stops8 as IoT device traces,
and possible locations for 5G MIMO antennas, respectively.
The datasets include more than 950 bus traces and over 4000
bus stops, with each datapoint of the bus trace featuring 16
metrics, including bus id, location coordinates, operating city
region, etc. At the initialization of the use-case, the user defines
parameters like the bounding box of interest, and the number
of RUs, traces, and MEC servers. The system randomly selects
the aforementioned elements from the datasets, and deploys
the application automatically. Figure 14 depicts an example
of the 5G-Slicer use-case map from a 1.139km x 3.976km
bounding box with 50 RUs and their radius (blue circles), 7
MEC servers (red points), and 30 buses (blue points). For the
sake of brevity, we use this bounding box in all experiments.

7 https://data.smartdublin.ie/dataset/dublin_bus_ sample
8 https://data.gov.ie/dataset/bus-stops-served-by-dublin-bus

o 75
&
250
% 25
= 00
[2]
2 10
3
E°
=

0

25 50 100 125

75
Number of RUs

Fig. 15: IoT Device Buffer Size and Timeout Count
10 l I I

0

CPU (%)

10

RAM (%)

1 2 3
Node

Fig. 16: CPU and Memory utilization

4 5

First, we evaluate how the cardinality of RUs influences the
needs of IoT devices for memory and data freshness. We select
a random bus (id = 1230) moving through the route with id
33568, and we alter for each test the number of RUs (25,
50, 75, 100, 125). Figure 15 depicts the maximum queued
datapoints and the number of timeouts that the IoT device
has experienced during the execution. From 25-75 RUs, the
maximum buffer, which an IoT device needs, ranges from 5
to 8 elements while for 100 and 125 the value is lower than 2.
Furthermore, the count of the timeouts (when a timeout occurs
the IoT queued the datapoint to its buffer) is more than 10 for
less than 100 RUs contrary to less than 5 when the number of
RUs is more than 100. The latter indicates that the density of
the RUs should be at least 100 in the selected bounding box
to have fresh and in-time results.

The next test investigates the performance of the deployed
application. We opt to emulate one cloud server, 6 MEC
servers deployed on randomly selected base-stations, and 20
IoT devices in the same city area. In this experiment, the IoT
devices move through the city with 5G-Slicer enforcing the
trajectory updates. After the experimentation, we retrieve the
monitoring data from the MEC nodes to investigate perfor-
mance and placement issues. Figure 17 illustrates the CPU
and Memory utilization of the deployed services. We notice
that nodes with ids 2, 3, and 5 have 10% CPU utilization on
average compared with nodes 0, 1, and 4, which have around
5% CPU utilization. The CPU difference is followed by a
similar memory utilization difference, with the first group of
nodes (2,3,5) having around 15% memory utilization contrary
to the others (0,1,4) that occupied only 3% of the memory. To
have a clear overview of the issue, we investigate network slice
traffic. The investigation reveals that there is no IoT device in
the reach of the 0, 1, and 4 MECs during the experimentation.
Furthermore, Figure 17 depicts the network traffic in bytes for
the rest of the edge nodes. Interestingly, even if the nodes have
similar utilization for CPU and memory, the network traffic is
fluctuating between the nodes. Specifically, node 5 exchanged
most of the data during the experiment, while nodes 2 and 3

11

Node 2
25
[y - : k , :
50
P Node 3
22| \MUwwin e AW
X
0o 1o : . d :
50
5 | WA A
Node 5
no L . . :
i 20 40 B0 80
Intervals
Fig. 17: Network utilization
. 10
ngUD 100
o 'loon 1000
0 [N
10 0 B0

Distance (m)

Fig. 18: Network Access Elements Scalability

transferred much fewer bytes. Our conclusion is three-fold: (i)
the placement of the Edge service should be in line with the loT
devices density, (ii) generally, the MECs were under-utilized
during the experiment, and (iii) MECs have stable CPU and
memory utilization independently from the incoming traffic.

C. Scalability Evaluation

In this section, we test the scalability of 5G-Slicer. Since
the network access elements of the system are realized only
on the conceptual graph, we initially examine if this scheme
is scalable. Then, we perform a scalability analysis for the
system’s limits regarding the underlying infrastructure.

1) Network Access Elements Scalability: In this experi-
ment, we deploy a MEC and the IoT generator of the previous
test in different city areas. In the same bounding box, we
deploy 10, 100, and 1000 RUs, and we perform a similar
bandwidth experiment as described in the Section VI-Al
for MIMO with an 8x4 antenna configuration, but with the
distances between the MEC and IoTs to be 10, 30, 60,
and 90m. Since the midhaul bandwidth is much higher than
the bandwidth of the radio access connections, we expect
radio bandwidth to dictate the bandwidth between the MEC
and IoTs. Interestingly, Figure 18 shows that the values for
the different distances follow the same distribution as the
Section VI-Al experiments. The latter is reasonable because
only the conceptual graph keeps the information about the RUs
without any compute resource provisioning with the memory
required for 1000 nodes amounting to 1.3GB. Thus, the only
“limiting” condition of the system is the size of the conceptual
graph. Running on a regular PC, 5G-Slicer supports thousands
of RUs without any issue. So, the system has no performance
degradation originating from the number of RUs.

2) Scalability of Compute Components: In this experiment,
we deploy 5G-Slicer on top of three different clusters, namely,
a single-node cluster, 2-node cluster, and 3-node cluster. Each
node is a VM equipped with 16cores@2.4GHz, and 16GB of
memory. Based on the description of the emulated instances
capabilities of the use-case in Section VI-B, we opt to have

300
» I Small Deployment
2 200 Large Deployment
3
& 100 l
; |

2
Cluster Size

3

Fig. 19: Bootstrapping Duration and Scalability

1/2/8 emulated nodes for cloud server, MEC servers, and IoT
workload, respectively, on a single cluster node. The latter
deployment reaches the limit for an accurate emulation based
on memory and the 65% of the host’s available processing
power. Consequently, the framework should be capable of
emulating 2/4/16 and 3/6/24 nodes on the 2-node and 3-node
clusters. Indeed, the framework is able to instantiate the afore-
mentioned instances. Next, we opt to evaluate the generality
of our solution, we reduce the capabilities of IoT by half. 5G-
Slicer achieves to double the number of the IoT devices with
only overhead at the emulation’s bootstrapping time. Figure
19 highlights the bootstrapping duration in seconds for the
different deployment schemes (Small or Large Deployment).
The deployment with 57 emulated nodes (3/6/48) had the
higher deployment time with 290secs, contrary to 11 (1/2/8)
nodes emulation, which took 67secs for bootstrapping. It is
obvious that the bootstrapping duration is proportional to
the number of the emulated nodes. In conclusion, the 5G-
Slicer is only bounded by the resources reserved for the
underlying execution environment, and when the resource pool
expands, the emulation capabilities proportionally increase
with a comparable raising of the bootstrapping time.

VII. RELATED WORK

To date, the majority of the efforts towards rapid experimen-
tation of 5G networks introduce simulators adopting theoreti-
cal models for the behavior of various network infrastructure
components. For instance, Muller et al. [8] introduce the
Vienna 5G simulator that enables the modeling of 5G networks
with arbitrary geometry and several types of base stations with
various performance models for evaluating signal strength and
interference. In turn, Mezzavilla et al. [9] introduce a 5G
simulator that targets the evaluation of services and control
algorithms that embrace the mmWave band. Moreover, Nardini
et al. [23] introduce Simu5G, a simulator targeting the perfor-
mance evaluation of the data plane of 5G services deployed
over the radio network by providing abstractions for various
user equipment and gNBs. Nonetheless, the aforementioned
approaches only take into account the modeling of various
components of the 5G infrastructure layer with limited or no
provisions for modeling node mobility, MECs, VNFs, or SDNs
in the form of network slices.

A key limitation of simulators is that behavior models
often ignore unforeseen system-level effects of the application,
especially in complex realms with multiple interacting entities.
Emulators attempt to tackle this pressing challenge by enabling

12

the actual application deployment, yet, mimicking the produc-
tion environment at a significantly lower cost [10]. Hardware-
based emulators, like Colosseum [24] or AERPAW [25], pro-
vide realistic emulation, scalable networking, and processing
capabilities. However, their “hardware-in-the-loop” approach
increases the cost, the implementation effort and requires
remote access to external infrastructures. Moreover, various
edge computing software-based emulators originate from the
extension of network emulators, such as MiniNet [26], in
an attempt to introduce experiment testbeds with compute
node and network link heterogeneity [27]-[29]. Focusing on
scalability and ad-hoc runtime alterations, Fogify [10] and
MockFog [30] take advantage of distributed cloud resources
to instantiate large-scale multi-host experiments. Interestingly,
MeDICINE [11] is a VNF prototyping platform that is able to
execute network functions, provided as software containers, in
an emulated compute environment. Nevertheless, just as with
the simulators, little or no provision is made in introducing
a multi-host emulator for 5G-enabled networks encapsulating
key components of the virtualization layer, such as network
slicing, VNF enforcement and positioning of mobile entities.

VIII. CONCLUSION

In this work, we introduce 5G-Slicer, an open and ex-
tensible framework for the design and rapid experimentation
of IoT applications on top of emulated 5G network slices.
5G-Slicer encapsulates powerful modeling abstractions, and
ready-to-use templates, for the description of 5G network
infrastructure and key virtualization technologies including
VNFs, cloud and edge resources, and the geo-positioning of
mobile entities. Through reproducible experiment scenarios,
or even at runtime, users can apply configuration changes,
inject workload, faults, alter the trajectory of mobile nodes
and monitor the resource utilization and network QoS of all
emulated components. With a comprehensive evaluation, we
show that for even complex testbeds, 5G-Slicer presents at
most an 11.7% error when comparing actual and emulated
network QoS. Last but not least, the scalability of 5G-Slicer is
independent of the number of radio units and is only bounded
by the emulated compute nodes. Still, as 5G-Slicer can be
deployed in a multi-host environment, when the underlying
resource pool increases, so does the scalability of 5G-Slicer.

Our future work includes the evaluation of emulation perfor-
mance in terms of connectivity update delay along with a more
extensive scalability testing, creation of emulation connectors
with other network simulators and emulators, such as NS3,
or mininet, and the design and implementation of edge native
services and concepts such as O-RAN intelligent controllers,
mobility northbound APIs, etc.

Acknowledgement. This work is partially supported by the EU Com-
mission through RAINBOW 871403 (ICT-15-2019-2020) project and by
the Cyprus Research and Innovation Foundation through COMPLE-
MENTARY/0916/0916/0171 and INFRASTRUCTURES/1216/0017 (IRIDA)
projects. The authors wish to thank Dr. Christos Tranoris and prof. Spyros
Denazis of the U. of Patras for providing measurements from the “Patras 5G”
testbed, which was supported by the SGVINNI H2020 (EU grant agreement
No. 815279)

[1]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

REFERENCES

H. Zhao, S. Deng, Z. Liu, Z. Xiang, J. Yin, S. Dustdar, and A. Zomaya,
“Dpos: Decentralized, privacy-preserving, and low-complexity online
slicing for multi-tenant networks,” IEEE Transactions on Mobile Com-
puting, 2021.

V. Sciancalepore, F. Cirillo, and X. Costa-Perez, “Slice as a service
(SlaaS) optimal IoT Slice resources orchestration,” GLOBECOM, 2017.
D. Trihinas, G. Pallis, and M. Dikaiakos, “Low-cost adaptive monitoring
techniques for the internet of things,” IEEE Transactions on Services
Computing, 2021.

X. Shen, “Device-to-device communication in 5g cellular networks,”
IEEE Network, vol. 29, no. 2, pp. 2-3, 2015.

J. Ni, X. Lin, and X. S. Shen, “Efficient and secure service-oriented
authentication supporting network slicing for Sg-enabled iot,” IEEE
Journal on Selected Areas in Communications, 2018.

P. Vitello, A. Capponi, C. Fiandrino, G. Cantelmo, and D. Kliazovich,
“Mobility-Driven and Energy-Efficient Deployment of Edge Data Cen-
ters in Urban Environments,” IEEE TSUSC, 2021.

M. Richart, J. Baliosian, J. Serrat, and J. L. Gorricho, “Resource Slicing
in Virtual Wireless Networks: A Survey,” IEEE TNSM, 2016.

M. K. Miiller, F. Ademaj, T. Dittrich, A. Fastenbauer, B. R. Elbal,
A. Nabavi, L. Nagel, S. Schwarz, and M. Rupp, “Flexible multi-node
simulation of cellular mobile communications: the Vienna 5G System
Level Simulator,” EURASIP Journal on Wireless Communications and
Networking, Sep. 2018.

M. Mezzavilla, M. Zhang, M. Polese, R. Ford, S. Dutta, S. Rangan,
and M. Zorzi, “End-to-end simulation of 5g mmwave networks,” IEEE
Communications Surveys Tutorials, vol. 20, no. 3, pp. 2237-2263, 2018.
M. Symeonides, Z. Georgiou, D. Trihinas, G. Pallis, and M. D.
Dikaiakos, “Fogify: A fog computing emulation framework,” in 2020
IEEE/ACM Symposium on Edge Computing (SEC), 2020.

M. Peuster, H. Karl, and S. van Rossem, “Medicine: Rapid prototyping
of production-ready network services in multi-pop environments,” in
2016 IEEE Conference on Network Function Virtualization and Software
Defined Networks (NFV-SDN), 2016.

S. Wang, K. Chan, R. Urgaonkar, T. He, and K. K. Leung, “Emulation-
based study of dynamic service placement in mobile micro-clouds,”
in MILCOM 2015 - 2015 IEEE Military Communications Conference,
2015.

R. A. Addad, M. Bagaa, T. Taleb, D. L. C. Dutra, and H. Flinck,
“Optimization model for cross-domain network slices in 5g networks,”
IEEE Transactions on Mobile Computing, vol. 19, pp. 1156-1169, 2020.
S. A. Busari, K. M. S. Huq, S. Mumtaz, J. Rodriguez, Y. Fang,
D. C. Sicker, S. Al-Rubaye, and A. Tsourdos, “Generalized hybrid
beamforming for vehicular connectivity using thz massive mimo,” IEEE
Transactions on Vehicular Technology, 2019.

“Published o-ran spec.” https://www.o-ran.org/specifications, 2020.

13

[16]
[17]
[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

P-H. Kuo and A. Mourad, “Millimeter wave for 5g mobile fronthaul
and backhaul,” in 2017 European Conference on Networks and Com-
munications (EuCNC), 2017.

“Release 16, 3gpp standard,” https://www.3gpp.org/release-16.
G. F. Riley and T. R. Henderson, The ns-3 Network Simulator.
Heidelberg: Springer Berlin Heidelberg, 2010, pp. 15-34.

M. Mahalingam, D. G. Dutt, K. J. Duda, P. Agarwal, L. Kreeger, T. Srid-
har, M. Bursell, and C. Wright, “Virtual extensible local area network
(vxlan): A framework for overlaying virtualized layer 2 networks over
layer 3 networks,” RFC, vol. 7348, pp. 1-22, 2014.

C. Tranoris and S. G. Denazis, “Patras 5g: An open source based end-
to-end facility for 5g trials,” ERCIM News, 2019.

D. Giannopoulos, P. Papaioannou, L. Ntzogani, C. Tranoris, and S. De-
nazis, “A holistic approach for 5g network slice monitoring,” in 2021
IEEE International Mediterranean Conference on Communications and
Networking (MeditCom), 2021, pp. 240-245.

M. T. Moayyed, F. Restuccia, and S. Basagni, “Comparative perfor-
mance evaluation of mmwave 5g nr and lte in a campus scenario,”
in 2020 IEEE 92nd Vehicular Technology Conference (VIC2020-Fall),
2020.

G. Nardini, D. Sabella, G. Stea, P. Thakkar, and A. Virdis, “SimuSg—an
omnet++ library for end-to-end performance evaluation of 5g networks,”
IEEE Access, vol. 8, pp. 181 176-181 191, 2020.

L. Bonati, P. Johari, M. Polese, S. D’Oro, S. Mohanti, M. T. Moayyed,
D. Villa, S. Shrivastava, C. Tassie, K. Yoder, A. Bagga, P. Patel,
V. Petkov, M. Seltser, F. Restuccia, A. Gosain, K. R. Chowdhury,
S. Basagni, and T. Melodia, “Colosseum: Large-scale wireless exper-
imentation through hardware-in-the-loop network emulation,” in IEEE
International Symposium on Dynamic Spectrum Access Networks, DyS-
PAN 2021. 1EEE, 2021.

M. L. Sichitiu, I. Guvenc, R. Dutta, V. Marojevic, and B. Floyd,
“Aerpaw emulation overview,” in Proceedings of the 14th International
Workshop on Wireless Network Testbeds, Experimental Evaluation &
Characterization, ser. WiINTECH’20, 2020, p. 1-8.

B. Lantz, B. Heller, and N. Mckeown, “A network in a laptop: Rapid
prototyping for software-defined networks,” in In ACM SIGCOMM
HotNets Workshop, 2010.

Y. Zeng, M. Chao, and R. Stoleru, “Emuedge: A hybrid emulator for
reproducible and realistic edge computing experiments,” in 2019 IEEE
International Conference on Fog Computing (ICFC), 2019.

A. Coutinho, F. Greve, C. Prazeres, and J. Cardoso, “Fogbed: A rapid-
prototyping emulation environment for fog computing,” in 2018 IEEE
International Conference on Communications (ICC), May 2018.

R. Mayer, L. Graser, H. Gupta, E. Saurez, and U. Ramachandran, “Emu-
fog: Extensible and scalable emulation of large-scale fog computing
infrastructures,” CoRR, vol. abs/1709.07563, 2017.

J. Hasenburg, M. Grambow, E. Griinewald, S. Huk, and D. Bermbach,
“Mockfog: Emulating fog computing infrastructure in the cloud,” in
2019 IEEE International Conference on Fog Computing (ICFC), 2019.

Berlin,

