FedBed: Benchmarking Federated Learning over
Virtualized Edge Testbeds

Moysis Symeonides Fotis Nikolaidis Demetris Trihinas
University of Cyprus FORTH-ICS University of Nicosia
Cyprus Greece Cyprus

msymeo03@ucy.ac.cy

fnikol@ics.forth.gr

trihinas.d@unic.ac.cy

George Pallis Marios D. Dikaiakos Angelos Bilas
University of Cyprus University of Cyprus FORTH-ICS
Cyprus Cyprus Greece
pallis@ucy.ac.cy mdd@ucy.ac.cy bilas@ics.forth.gr

Abstract

Federated Learning has become the de facto paradigm for
training Al models under a distributed modality where the
computational effort is spread across several clients without
sharing local data. Despite its distributed nature, enabling FL
in an Edge-Cloud continuum is challenging with resource
and network heterogeneity, different AI models and libraries,
and non-uniform data distributions, all hampering QoS and
limiting innovation potential. This work introduces FedBed,
a testing framework that enables the rapid and reproducible
benchmarking of FL deployments on virtualized testbeds.
FedBed aids users in assessing the numerous trade-offs that
result from combining a variety of FL software and infras-
tructure configurations in Edge-Cloud settings. This reduces
the time-consuming process that includes the setup of either
a virtual physical or emulation testbed, experiment configu-
rations, and the monitoring of the resulting FL testbed.

CCS Concepts: « Computer systems organization —
Cloud computing; - Computing methodologies — Dis-
tributed artificial intelligence.

Keywords: Federated Learning, Edge Computing

ACM Reference Format:

Moysis Symeonides, Fotis Nikolaidis, Demetris Trihinas, George
Pallis, Marios D. Dikaiakos, and Angelos Bilas. 2023. FedBed: Bench-
marking Federated Learning over Virtualized Edge Testbeds. In
Proceedings of IEEE/ACM UCC 2023 (UCC’23). ACM, New York, NY,
USA, 10 pages. https://doi.org/XXXXXXX.XXXXXXX

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

UCC’23, December 2023, Taormina, Italy

© 2023 Association for Computing Machinery.

ACM ISBN xxx-xxx-xx-xxx/YY/MM...$15.00
https://doi.org/XXXXXXX.XXXXXXX

1 Introduction

Federated Learning (FL) is transforming the realm of Artifi-
cial Intelligence (AI) by enabling collaborative model training
among multiple clients in a distributed manner [15]. With
FL, geo-dispersed and sensitive data such as personal activ-
ity, bio-signals and financial records remain localized and
unexposed to the other collaborators during training [11]. FL
embraces the benefits of Edge Computing, by training models
at the data origins, reducing data movement and leveraging
a central entity, the FL server, solely for the training coordi-
nation and the interim aggregation of model weights [7].

Tools such as Flower [2] and FATE [14] contribute to the
democratization of FL reducing the entry barrier by handling
the coordination of the distributed training. Still, migrating
FL to the Edge presents significant challenges that FL tools
cannot address alone. In edge settings, resource heterogene-
ity is normal as FL clients may run on diverse hardware with
varying capabilities. In addition, network connectivity may
fluctuate and significantly impair QoS. These infrastructure
challenges can lead to performance bottlenecks not orig-
inally envisioned in the FL process. However, FL features
several knobs for optimization, which range from parameters
of the distributed training (i.e., termination clause, aggrega-
tion algorithm) to the ML backend and model architecture as
well as dataset partitioning. For example, PyTorch as an ML
backend is more compute-hungry than TensorFlow, while
the latter has a higher memory footprint and consumes more
network bandwidth [17]. In turn, opting for a deep neural net-
work can reduce model loss but requires excessive compute
resources in contrast to less complex but more loss-prone
models [22]. Hence, thoroughly testing multiple FL settings
is of paramount importance to improve not only QoS but
also to reduce resource waste and monetary costs.

Recent works propose a diverse solution set for FL opti-
mization. Yet, they fall short when it comes to experimental
evaluation. For example, many focus on providing realis-
tic federated datasets or models with reference benchmark
metrics, albeit experimentation is usually limited to a single
physical node [3]. Likewise, works for FL in IoT settings,

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

UCC’23, December 2023, Taormina, Italy Moysis Symeonides, Fotis Nikolaidis, Demetris Trihinas, George Pallis, Marios D. Dikaiakos, and Angelos Bilas

FedAvg global weight aggregation

5,
@ W, = Z ?kw%tl, where i denotes the ith training round
e 3 *
Wety Round N

Round 3

4
A wczrtl
We b, Round 2
@ (11 Round 1
i

client 1 FL client K
client 2 Entropy

C)
=
S
j
Accuracy

Figure 1. High-Level Overview of Federated Learning

are usually limited to a handful of Raspberry Pis [7]. Finally,
tools, like FL simulators [5] or emulators [24], are dependent
on specific use-cases or provide only FL-level evaluation (i.e.,
model loss, statistical metrics) without considering the impli-
cations of the actual underlying resources to the FL process.

This leads us to the focal point of our work: rapidly de-
signing FL testbeds and conducting realistic experiments.
Several challenges manifest in this vision, including the high
cost involved in the design of an appropriate testbed, the
time-consuming process of selecting realistic data distribu-
tions for FL and configuring resource profiles for compute
nodes and networking. In turn, the choice of the ML back-
end can impact performance metrics such as accuracy and
training duration. As a result, FL practitioners invest time in
developing and assessing multiple ML models. To achieve
intelligence at the Edge Continuum, it is necessary to carry
out comprehensive evaluations for FL workflows.

In this paper, we present FedBed [6], an open-source frame-
work for the systematic evaluation of FL workflows. FedBed
abstracts FL deployments into tunable virtualized testbeds
so that users can assess the performance and optimize the
QoS of their FL workflows. Users can investigate several
trade-offs by changing FL and ML configurations along with
the distribution of the underlying computational resources
and datasets. We integrate FedBed with two state-of-the-art
evaluation frameworks [16, 21] that utilize container orches-
trators (e.g., Kubernetes), allowing FedBed to operate across
multiple nodes. Lastly, we conduct an empirical study that
compares performance and utilization metrics by accounting
for the underlying Al models, data distributions, scalability,
connectivity and computation limits, offering insights into
the strengths and weaknesses of FL deployments.

The rest of the paper is structured as follows: Section 2
elaborates on FL over the Edge Continuum. Sections 3 and 4
introduce FedBed and its creation details. Sections 5 provides
a comprehensive evaluation. Section 6 presents the related
work, and Section 7 concludes this paper.

2 Background
2.1 The FL Process and Algorithms

Figure 1 depicts a typical FL flow, where a central server ob-
tains a set of available clients (cy, ..., cx) that meet certain cri-
teria (i.e., resource availability) and subsequently broadcasts
to the clients a training program and an initial model W,
with t, denoting the initial training round (@). Next, clients

update the model locally w, ;,, based on local knowledge
without exchanging data among themselves (2). The amount
of samples used during local training can differ per client.
When finished, the Server collects an aggregate of the client
updates creating a new global model W, (3. This is repeated
for several rounds until a termination criterion is met that
can include a max number of rounds or the convergence to
a certain model loss for early termination.

Hence, the central Server only facilitates the training coor-
dination that implies the client selection process and model
aggregation. For the aggregation, the only requirement is
that the process yields a weight vector for the model under
training. FedAvg [15] is the most well-known FL algorithm
and is often considered the baseline for FL. For local training,
FedAvg embraces in parallel, E epochs of Stochastic Gradient
Descent (SGD) where local model weights are updated to
optimize the model loss based only on client samples. At the
end of the round, the derived model weights are collected per
client by the Server. Aggregation is then performed using a
weighted average where si is the number of samples used
by each client during local training and S = ;. sx:

Sk
W, = g 5 Ve 1)
k

So, clients that have used more samples during the training
process have a larger influence on the new state of the model.
Other than FedAvg, there is a plethora of FL aggregation
algorithms. For instance, FedProx [12] is a generalization of
FedAvg where the clients extend the SGD process so that
clients optimize a regulated loss with a proximal term that
enforces the local optimization of the loss in the vicinity of
the global model per training round. Similarly, SCAFFOLD
is an FL algorithm that attempts to optimize the training
process for non independent and identically distributed (Non-
IID) data by providing a “correction” mechanism for the
client-drift problem during local training [9].

In terms of client selection, these algorithms employ a
common strategy where they opt for a random selection
from the pool of available clients via a uniform distribution.
However, studies show that performing a biased selection of
clients can yield faster global model convergence by selecting
clients with higher local loss [4] and reduce the training time
by estimating the time required to complete a round [18].

2.2 FL Challenges over the Edge Continuum

Realising FL in Edge-Cloud settings presents challenges for
evaluating performance, considering FL parameters, infras-
tructure heterogeneity, and data distribution volatility. Col-
laboration between data scientists and system engineers is
crucial to find the best-fit model that meets performance
requirements and infrastructure constraints. However, ex-
cessive focus on infrastructure configuration may divert at-
tention from the primary FL optimization objective. Below

FedBed: Benchmarking Federated Learning over Virtualized Edge Testbeds

i @
- User's Input
FedBed User EAggregation;
,—} l Parameters| i Model Algorithm

FedBed Interface

Execution Data FL Learning

Translator Translator Translator
Resource Data FL Server FL Client
Distribution Distribution Template Template

Deployment Composer

FedBed Controller

Virtual Testbed Connector

Combined Metrics

/
4, User

! Model

FL Virtual Testbed

Overall FL metrics

/

4 Metric Extractor 853

’ : g8

3 U~ { Glent]z = L { Ciient) 38°

3 3 S EYe ~|. | FedBed Client = é s

= Ze® RIS 93

-_ 5 o - S8

s Client Client |====-~= :l Server User Ss3

® Aggregation [y

g \ =S

3 \ =8

g g
S g
S 3
S 3
<

‘f Metric Extractor
\

FedBed Server

Utilization l

Metrics wyy (loss, Accuracy, Duration, etc.)

[Virtual Testbed Orchestrator]

<

Figure 2. FedBed Testing Framework High-Level Overview

are the key challenges that FL practitioners must tackle when
evaluating FL workflows in Edge Continuum settings.
Challenge #1: ML & FL configuration. FL workflows are
heavily influenced by the ML backend, model architecture
and the FL coordination. Fine-tuning these aspects is essen-
tial to balance model loss and training time. ML backends
such as TensorFlow and PyTorch follow similar prototyp-
ing aspects by operating on tensors and viewing models as
computational graphs with both offering many pre-compiled
SOTA model architectures. Still, the implementation of these
backends can impact FL performance [17]. In turn, certain
models like linear regression enable fast training and infer-
ence but reduced accuracy, while neural networks (NNs)
prioritize accuracy at the expense of training time and re-
sources [23]. Lastly, the parameters of FL aggregation and
client selection may alter the model’s loss and training time.
Challenge #2: Resource heterogeneity. Moving FL to the
Edge means training models over devices that come in many
shapes and sizes with a plethora of hardware and software
configurations. One client may feature powerful processors,
GPUs or specialized accelerators, while others may partici-
pate in the training process under limited resources. Strag-
gling clients in the training process delay the completion
of a training round with a round considered finished only
when all clients report updated model weights to the Server
to produce the new state and synchronize the execution of
the next round [4]. While some may advocate that potential
stragglers should not be part of the training process, this
may not be possible as a diverse set of clients and their data
are often anticipated to reduce model bias [3].

Challenge #3: Network fluctuations and timeouts. Tra-
ditional networks require more bandwidth at central points
(i.e., data center), whereas deploying ML tasks on Edge may
require more bandwidth across individual edge nodes. Edge
devices often connect to wireless mobile networks with

UCC’23, December 2023, Taormina, Italy

constrained bandwidth and varying signal strength. FL can
reduce the communication overhead by only exchanging
model weights, but NNs can be complex with millions of pa-
rameters in the weight vector. Timeouts are more frequent
in edge links making training round duration unpredictable
leading to idle nodes waiting till a disconnected clients re-
sumes work and the round can be marked as finished.
Challenge #4: Unbalanced and non-IID data. A key chal-
lenge for FL are non-IID data across clients that causes sta-
tistical variability and sub-optimal model training. This in-
creases the training effort and can drive the local training
towards a local optima that is far from the global optima -
hence degrading the effectiveness of FL [9, 13]. Moreover,
FL clients with skewed datasets can introduce bias in the
learning process, while some of them could be stragglers
becoming bottlenecks in the training process.

3 The FedBed Framework
3.1 Overview

Users face increased challenges mentioned above when ex-
ecuting FL workloads on Edge devices, and seek solutions
to automatically evaluate various FL aspects such as ML
models, aggregation algorithms, infrastructure properties,
and more. To address these challenges, the FedBed testing
framework allows users to choose their desired combination
of built-in ML models, datasets, and aggregation algorithms,
making it easy for them to evaluate the FL performance and
infrastructure implications with minimal effort. The only
precondition for users is to have an already installed virtual
testbed orchestrator compatible with the FedBed framework.
Fig. 2 provides a high-level overview of the framework and
its functionalities. Users start the evaluation by designing the
FedBed’s composable FL model in a YAML file and submit-
ting it to the FedBed Interface, which is a Python light-weight
library. FedBed Interface can be utilized from interactive data
analysis tools, e.g., Jupyter Notebooks, and users can re-use
the model’s YAML file and the notebooks to easily repro-
duce their experimental analysis. With FL model submitted,
FedBed validates model’s parameters and the available re-
sources, and propagates the model to FedBed Controller.
Then, FedBed Controller coordinates the experimentation
by, firstly, dividing the parameters into execution, data, and
FL learning sub-parameters and invoking the respective
subcomponents, namely, Execution, Data, and FL Learning
Translator. Execution Translator takes care of infrastructure-
related parameters, generating resource limits by utilizing its
resource distributions (e.g., Homogeneous, Gaussian, Pareto,
etc.). Similarly, Data Translator creates the data partitions
based on the submitted configurations. Lastly, FL Learning
Translator populates the templates for the FL server and
clients, customizing them with the selected ML and aggre-
gation parameters. If users would like to introduce custom
ML models or aggregation algorithms, they need to mate-
rialize the respective interfaces of the FedBed framework.

UCC’23, December 2023, Taormina, Italy Moysis Symeonides, Fotis Nikolaidis, Demetris Trihinas, George Pallis, Marios D. Dikaiakos, and Angelos Bilas

Fl Server

=,
Fi Client k&

FL Learning
Layer

"
Layer 1

Resource
Pool

Layer

Pool Pool

Execution 't Data

1
1
1
1
Resource Resource '
1
]
1

Figure 3. FL as a Multilayered System

Specifically, FedBed provides an interface-oriented design
that allows users to introduce custom ML models or aggre-
gation strategies in FL services with minimal effort. With
custom artifacts introduced, the FL Learning Translator is
responsible to include them in the FL services templates, and,
at the runtime, the system invokes these artifacts without
needing users to update and rebuild the whole framework.
At the next step, the Deployment Composer combines the
results from the translators, creating a set of FL deployment
objects with all the necessary information and generated
parameters. To deploy the generated FL workload, FedBed
uses a Virtual Testbed Connector, which (i) translates the
deployment objects into low-level primitives for the underly-
ing Virtual Testbed Orchestrator; (ii) facilitates deployment
and testbed configurations; and, at runtime, (iii) retrieves
monitoring metrics from the underlying virtualized testbed.
With the respective primitives on hand, Virtual Testbed Or-
chestrator deploys the FedBed FL services in separate con-
tainerized environments, connects them over a virtualized
network, and injects the network and computing resource
limits. FedBed integrates two Virtual Testbed Orchestrators,
namely, Fogify [21] and Frisbee [16]. These testbed orches-
trators are built upon the foundation of multi-host docker or-
chestrators, such as Swarm and Kubernetes, enabling FedBed
to effortlessly scale across an extensive array of nodes.
During experimentation, FedBed gathers various infras-
tructure and FL service metrics. It retrieves utilization met-
rics like CPU and memory usage from testbed orchestrators,
and, also extracts fine-grained FL metrics from FL Client
and Server, including loss, accuracy, and round duration.
These metrics empower users to evaluate trade-offs between
model’s performance and the infrastructure’s efficiency.

3.2 Composable FL Pipelines Modeling

FedBed considers an FL deployment as a multilayered sys-
tem, as depicted in Fig. 3, with: (i) FL Training Layer being
deployed on top, responsible for the FL training; (ii) Data
Layer that is characterized by its dataset distribution; and
(iii) Execution Layer, which illustrates the underlying com-
pute and network resources. FedBed modeling allows users
to configure fine-grained parameters for each layer, namely:

infrastructure:
num_of_clients: 30
overall_CPU_power: ...
overall_memory: ...
minimum_CPU_power:...
minimum_memory: ...
FL_server: ...
devices_distribution:

function: pareto

federated_learning: data:
num_of_rounds: 100 dataset: MNIST
aggregation_function: category: non-iid
function: FedAVG distribution:
parameters: ... function: pareto
ml_model: parameters:
backend: PyTorch
model: MobiNetV2
parameters:

batch_size: 32 parameters:
epochs: 3 connections:
@ - downlink:

data_rate: 200MBps
latency: 20ms

error_rate: 0.1%
uplink: @

Figure 4. FedBed Abstractions

FL Learning Layer: Fig. 4 () shows an FL object with
user-selected parameters (federated_learning), such as
hundred rounds for FL training (num_of_rounds) and the
FedAVG aggregation function. Users can also customize the
aggregation function’s parameters using the parameters
property. Moreover, users choose the ML model (m1_model)
and its parameters, as seen in Fig. 4 (1), where PyTorch is
selected as backend with MobiNetV2 as the model and its
tuning parameters, like, batch_size, epochs, etc.

Data Layer: The data layer is responsible for partitioning
real-world datasets into smaller subsets. A set of exposed
parameters enable users to control and quantify the imbal-
ance properties of an FL deployment, thus addressing the
data distribution challenge, which is not easily achievable
with real federated datasets [3]. The current implementation
is focused on horizontal FL, where each party shares the
same feature space but owns different samples. By adopting
partitioning strategies, researchers can configure the size of
local data on each FL client and realistically correlate this
imbalance with the computation resources of the Edge nodes
hosting the FL clients, e.g., low-capacity nodes are not ex-
pected to handle large datasets. To achieve this correlation,
users select a statistical distribution, such as flat, normal,
pareto, etc. Fig. 4 (2) shows the MNIST dataset (details in
Sec. 4.2) as non-IID, following the Pareto distribution.

Execution Layer: configures the available resources on
the underlying deployment. For instance, in Fig. 4(3), users
select the number of clients (num_of_clients) and define
the overall CPUs (overall_CPU_power) and memory size
(overall_memory). They can set the minimum CPU power
(min_CPU_power) and memory (min_memory) assigned to a
single FL client. Users also describe high-level resource distri-
bution (devices_distribution) along with its properties,
and the FL server’s CPUs and memory (FL_server). More-
over, users should introduce a network connection that de-
termines the network QoS among the FL server and clients.
A network connection provides uplink & downlink QoS,
including data_rate, latency, and error_rate.

It should be noted that the parameters for models, aggre-
gation functions, data and resource distributions, are tailored
to the underlying implementation. The parameters from al-
ready provided methods are described in FedBed’s site [6].

FedBed: Benchmarking Federated Learning over Virtualized Edge Testbeds

4 FedBed Layered Implementation

FedBed simplifies the integration of AI/ML models, libraries,
and datasets by employing an abstract class with two loosely-
coupled abstract handlers: Model Handler and Dataset Han-
dler, representing FL Learning Layer and Data Layer per
node. New AI/ML models or datasets can be introduced by
extending the latter handlers. The Execution Layer, on top
of which the FL Learning and Data Layers operate, forms a
scalable testbed managed by a Virtual Testbed Orchestrator.

4.1 FL Learning Layer

FL training requires services that handle the low-level imple-
mentation aspects, such as FL server-client communication,
health checks, orchestration, etc. To alleviate the difficulties
of a new FL framework creation, FedBed extends the well-
known Flower FL framework [2]. We rely on the frameworks’
aggregation algorithms and services, and we notably extend
and automate the submission of FL training pipelines.

An FL client follows similar sequential execution steps in
each FL round, specifically: (i) the client introduces the data
partition to the model; (ii) trains the model; (iii) sends the
trained parameters to the server; (iv) updates the model’s
parameters with the newly received aggregated parameters;
and (v) may evaluate the model. Moreover, the FL server
also uses the same methods, e.g., for the evaluation of a
separate sample, or to send the newly created parameters.
For that reason, we created a class, namely Model Handler,
that provides a set of abstract methods, such as train, test,
get_parameters, etc. These methods can be applied to AI/ML
models, which are the handler’s main input and provide the
structure of the deployed model. Unfortunately, different
backends provide different implementations of the latter
methods, so FedBed introduces materialized classes for the
most well-known libraries. In particular, FedBed supports
two deep learning backends, PyTorch and TensorFlow, along
with SKlearn as a lightweight Al library. Table 1 includes the
available combinations of models, backends, and datasets.

Moreover, FedBed currently offers AI/ML models for two
well-known datasets MNIST and CIFAR10/100, which are
described in detail in Section 4.2. For the MNIST dataset,
a Convolutional Neural Network (CNN) is implemented in
both PyTorch and TensorFlow. The CNN architecture con-
sists of six trainable layers, including two 2D convolutional
layers, two 2D dropout layers, and two linear layers. Addi-
tionally, non-trainable layers such as ReLU activation after
the first and second convolutional layers, a MaxPool2D layer
following the second ReLU layer, and a Log-Softmax activa-
tion function for generating the final output are included.
Furthermore, linear and logistic regression models using the
SKlearn library are available for the MNIST dataset. For CI-
FAR datasets, FedBed offers the well-known MobileNetV2
model in both TensorFlow and PyTorch. MobileNetV2 is a
CNN model commonly used for image classification, it con-
sists of 53 layers, and its details can be found in [20].

UCC’23, December 2023, Taormina, Italy

Models Backends Datasets
CNN TensorFlow MNIST
CNN PyTorch MNIST
Linear & Logistic Regression SKlearn MNIST
MobileNetV2 TensorFlow | CIFAR10/100
MobileNetV2 PyTorch CIFAR10/100

Table 1. Framework’s Integrated Models and Datasets

4.2 Data Layer

Each FL client is equipped with a Dataset Handler responsi-
ble for retrieving a partitioned dataset. The handler interacts
with the IO system, fetches the data from storage, and deseri-
alizes it into a format suitable for the Al process. To meet the
Al model’s requirements, data may undergo further transfor-
mations, such as normalization and resizing. The formating
and transformation of the data are driven by the backend
and the respective dataset, so FedBed implements a Dataset
Handler for each Backend-Dataset pairing (Table 1).

The transformed data is then allocated in the memory
space of the FL node ensuring faster access. Once in mem-
ory, the data is fed to the Al model’s input layers for pro-
cessing through the forward pass. Currently, FedBed allows
datasets that fit within a client’s memory capacity, with
larger datasets extending beyond this limit not being fac-
tored in. Our future roadmap includes the integration of a
batch processing methodology, wherein substantial datasets
can be effectively processed in smaller, manageable batches.

Additionally, FedBed provides an automated data parti-
tioning mechanism to emulate different data distributions
across clients. Users define the shared dataset location, the
number of clients, and the desired data distribution strategy
(e.g., Flat, Pareto, Gaussian). During deployment, FedBed
generates statistics for the distribution and uses them to
determine partition parameters (offset, size). Each client is
then provided with these parameters, ensuring that they
read distinct ranges from the shared dataset.

FedBed uses two well-known datasets for image classifica-
tion: (i) MNIST that contains 60k grayscale images of hand-
written digits (28x28 pixels) grouped into 10 classes (0 to 9);
and (ii) CIFAR10 and CIFAR100 contain colored images (32x32
pixels) of various objects like airplanes, cars, and animals,
with 10 and 100 classes, respectively. Both CIFAR10 and CI-
FAR100 have 50k training images and 10k test images.

4.3 Execution Layer

To ensure portability and extensibility across different en-
vironments, FedBed introduces its components into Docker
images. Moreover, the FedBed codebase provides various
environmental variables, through which one changes the FL
services’ flow without needing to rebuild the FedBed Image.
Thus, a running FedBed container executes a specific FedBed
FL service, server or client, and invokes particular parts of
code for aggregation algorithms, ML models, datasets, etc.
The manual execution of FedBed containers enforces users
to define every environmental variable on each container.

UCC’23, December 2023, Taormina, Italy Moysis Symeonides, Fotis Nikolaidis, Demetris Trihinas, George Pallis, Marios D. Dikaiakos, and Angelos Bilas

P -

100 Ry) el o by W‘W Feh gl ety
s R RER Y | [I
5 504 | | ‘ | i, \ ‘ F ‘h |]

25_<|,|-“;H7'|A AR w NN Ig‘ il

‘W’ i V\ |I”ﬂ

‘ ‘_» it W' W

rr mv Iy 4 ~M‘||!m el ‘M i«m fon 4l
|
||| ! ’ \l 4 |

Iwﬁ*
L |I|\ \‘||| “l‘l‘

|
Wi it 4\, . LJL, u,:., [JI _ L

4-—-&-%
T

|
I
" == Netwurk

CPU %
3

—-= Network

o
MBs

Seconds

Figure 5. FL clients’ mean CPU and network usage

To tackle this issue, FedBed provides an automated transla-
tion process for the framework’s modeling abstractions into
deployment objects, each of which represents an FL service
(server or client), keeping the respective environmental pa-
rameters along with infrastructure properties. Next, the sys-
tem invokes the respective Virtual Testbed Connector, which
is capable of translating the deployment objects into primi-
tives readable from the underlying Virtual Testbed Orchestra-
tor. FedBed currently integrates Fogify [21] and Frisbee [16]
frameworks as Virtual Testbed Orchestrators. The process
of testbed instantiation is consistent for both orchestrators,
so next we describe the process of the Fogify framework.
When Fogify receives the translated model, it instantiates
the FedBed containers, constrains their compute resources,
and establishes their network connectivity and QoS. To do
that, Fogify utilizes a multi-host Docker-based cluster orches-
trator, namely Docker Swarm, whose responsibility is to start
the containerized services and limit their execution capabili-
ties via Linux Cgroups, based on the deployed description. In
parallel, Fogify disseminates a set of instructions to Fogify’s
Agents, which are located on every cluster node and apply
the controller’s commands to the running instances. These
commands mainly refer to network shaping at the testbed
bootstrapping. Finally, Fogify’s Agent encapsulates a moni-
toring enabler that captures the testbed’s utilization metrics.

4.4 Cross-Layer Monitoring

At the runtime, FedBed logs a comprehensive set of moni-
toring metrics. Since the data layer in our approach is static
during the execution, the system keeps only the number of
data points and the initial size of the respective partition.
For Learning layer, we extract two types of metrics, namely
Model Performance Metrics and Time Metrics. Model Perfor-
mance Metrics provide ML-level KPIs per round, including
overall and per-client accuracy and loss. Moreover, Time
Metrics are related to the overall latency and duration of the
FL process, such as the training duration and round dura-
tion per client. The framework also monitors the duration
of every learning stage, including data fetching, training,
and evaluation timings for each client. To extract these met-
rics, FedBed introduces custom methods that intersect the
Model Handler execution at runtime and generate per-client
duration-related FL metrics. Moreover, FedBed extends the

FL server code to log the overall model metrics, like global
model accuracy and loss, FL round duration, etc.

Finally, FedBed also extracts Utilization Metrics from the
Execution Layer such as CPU and memory usage, network
traffic, etc, which are provided by the Virtual Testbed Or-
chestrator. Since all metrics are timestamped, users can com-
pare utilization metrics with the ML performance and time
metrics to gain insights for system’s reactions and resource
consumption, identifying potential bottlenecks.

5 Experimentation Study

We employ a bare metal cluster of 48 CPUs, all clocked

at 2.45GHz, and 176GB RAM. We deploy Fogify on top to

manage the resource pool and provision virtual appliances

through the FedBed testbed connector. Each FedBed trial

requires only a template declaring the experiment resources,

network connectivity, FL parameters, ML backend and dataset.
The study’s templates are accessible at FedBed repo [6].

5.1 FL Client CPU and Network Patterns

This experiment showcases the repeatable behavior of FL
from a systemic viewpoint. We request through FedBed 10
homogeneous FL clients (2cores@1.6GHz, 4GB RAM) and set
TensorFlow as the ML backend and the CNN model for the
MNIST dataset with the data equally partitioned among the
clients. Fig. 5 (top) portrays the clients’ CPU (left axis) and
network (right axis) during distributed training and with
the x-axis depicting the experiment duration till comple-
tion (26mins). We observe a distinguishable periodic pattern
where a high network spike is always succeeded by a consid-
erable rise in CPU utilization (~100%) and then followed by
a lower network spike, after which the CPU falls below 50%.

To further scrutinize FL behavior, we zoom-in on a random
period of 5 training rounds (Fig. 5 bottom). In this plot, the
vertical dotted lines signify the end of the local training as
reported by the FL clients. One can observe that after local
training the clients are underutilized with CPU usage to be
slightly below 50%. At this time, the central Server begins the
aggregation of the clients’ weight vectors. Once a new state
is produced, the Server disseminates to clients the new model.
This is noticeable by the large network spike. Afterwards,
the clients commence local training, with the CPU jumping
to 100% for the training duration. This concludes the periodic

FedBed: Benchmarking Federated Learning over Virtualized Edge Testbeds

UCC’23, December 2023, Taormina, Italy

Config-A Config-B Config-C
8
2w M%%&%%é%f%fm
f=4
§ 20 20 20
I B PV S S S 1 [lessfes=sfssafrssgleorssassesferniticslfs
nl n2 n3 ™ n5 n6 n7 n8 n9 nl0 nl n2 n3 4 n5 nd n7 n8 n9 nl0 nl n2 n3 4 n5 np6 n7 n8 n9 nl0 nllnl2 nl3 nl4 nl5 nl6 nl7 nl8 nl9 n20 n21 n22 n23 n24 n25 n26 n27 n28 n29 n30
Figure 6. Training round duration for the 3 under examined configurations
Config-A Config-B Config-C
200 200 200
c
S 150 150 150
Emn_ L L _ L L 100 4 N=Rul (= 100 __ ___ __ .
5 = % %0 50
¢ nl n2 n3 4 n5 né n7 nd nd nld ¢ nl n2 n3 d n5 né n7 n8 nd nld ’ Fll nZ r\3 FI4 rB n6 n7 n8 n9 nldnll rllZ r|13 n14 nl5 nl6 nl7 nl8 le r\Zﬂ n21 r\ZZ n23 r\24 nZS n26 n27 n28 n29 n30
Figure 7. Client CPU utilization for the 3 under examined configurations
Name | Rational | Clients | CPUs/Freq. | Samples same resource pool with Config-A attributed to the x2.9
: . per Client per Client jump in traffic (28590 MB). To this end, finding the sweet-spot
Config-A Baseline 10 4cores@2.4GHz | 6000

Config-B | Scale-down | 10 2cores@1.6GHz | 6000
Config-C | Scale-out | 30 2cores@1.6GHz | 2000

Table 2. Experimental Configurations

nature of FL. From the zoom-in, we note that some rounds
feature not 1 but 2 network spikes. This extra overhead is
not obvious from a theoretical perspective and is attributed
to the FL coordination where weights are disseminated twice
- one time for the FL assessment (i.e., loss computation) and
again for the next FL round. In conclusion, during FL, one
can observe specific usage patterns in computing and network
resources with different utilization requirements per FL phase.

5.2 Vertical & Horizontal Scaling

Next, we examine the impact of resource shaping on FL
performance by introducing 3 configurations (see Table 2).
As a baseline (named Config-A), we have 10 clients with
4cores@2.4GHz. Then, we introduce Config-B, where we
scale-down the computing power of the FL clients to 1/3 of
the baseline (same configuration as Section 5.1) and Config-C
where we scale-out Config-B to reach 30 clients.

Fig. 6 and 7 depict the results. The left plots refer to
Config-A, where the mean training time per round is ap-
prox. 15s and the CPU 75-80%. For comparison, these insights
are highlighted with red in the other plots. Since the base-
line clients are slightly under-utilized, next we try the scale-
downed Config-B. By doing so, we observe that the clients
are now almost fully utilized but a performance penalty
is introduced with the training time increasing to 45-50s.
Acknowledging the unfortunate effect of the scale-down,
Config-C is considered next. Scaling out the client set, natu-
rally, reduces the client load about ~55% but we observe that
while training time lowers it remains more elevated than the
baseline at 17-19s. This strikes for more investigation, where
more clients result in more network traffic, and coordination
effort for both model updating and synchronization. Inspect-
ing the network traffic of all configurations, the setups with
the same number of clients, Config-A and Config-B, have
almost identical traffic (9646 & 9407 MB). On the contrary,
Config-C imposes a penalty in training time despite the

for the number of clients and amount of resources each should
harbor requires the examination of multiple trade-offs.

5.3 Impact of ML Libraries and Models

Let us consider the Config-A and Config-B settings of the
previous experiment. We compare the same CNN model from
2 libraries (PyTorch, TensorFlow) and a linear regression
from SKlearn as a light alternative. For all tests, FedBed uses
the MNIST dataset and the monitoring is set to report round
duration, model loss and accuracy, and system-level metrics.

Fig. 8 and 9 depict the experiment results. Initially we
concentrate on the top plot of Fig. 8 and compare the 2 set-
tings where Config-A exhibits a smaller training round than
Config-B. This is expected with the latter featuring 3x less
computational resources. Next, we compare the ML back-
ends. We start with SKlearn where we observe that it features
the better training time and consumes less CPU resources
for both configurations compared with the CNN models.
Looking at the network plot, one immediately observes that
SKlearn has a significantly low network footprint compared
to the other backends. These savings, though, come at a
cost where the less complex model takes an accuracy hit of
more than 12% and with a model loss of almost x2.5 more
than the other backends. Still, in some extremely constrained
cases, this trade-off may be worth pursuing. Moving on, we
compare PyTorch and TensorFlow. First, we observe that
accuracy and model loss are almost identical. This is ex-
pected as they deploy the same CNN model architecture.
Examining the Config-A, PyTorch and TensorFlow have al-
most the same FL round duration, but TensorFlow consumes
more CPU resources than PyTorch. Interestingly, we observe
that PyTorch outperforms about 10% TensorFlow in terms of
training round duration with Config-B. This performance
boost can be interpreted as the better utilization of available
compute resources when looking at the CPU insights for
Config-B. We will investigate the effects of neural network
libraries deeper in the experimentation of Section 5.6 where
TensorFlow can perform better in extreme network condi-
tions. In conclusion, even before FL knob optimization or even

UCC’23, December 2023, Taormina, Italy Moysis Symeonides, Fotis Nikolaidis, Demetris Trihinas, George Pallis, Marios D. Dikaiakos, and Angelos Bilas

Round Duration

»n 40
°
=
8 20
o]
(2]
0
“EnsorFlow PyTorch Sklearn EnsorFlow PyTorch Sklearn
Config-A Config-B
CPU Utilization
5
8n
=
S ®
e =
@
o o
TensorFlow PyTorch Sklearn TensorFlow PyTorch Sklearn
Config-A Config-B
Overall Network Traffic
10000
@
5000
=
o
TEnsorFlow PyTorch Sklearn TEnsorFlow PyTorch Sklearn
Config-A Config-B

Figure 8. Training round duration, CPU and network traffic

— Tensorflow = Pylorch —— Skleamn

+ pylorch —— skleam

[9) s
o
3
8 80
o — Tensorflow

0 10 20 30 20 50
Rounds

Figure 9. Model loss and accuracy for each ML backend

infrastructure resource profiles, the choice of ML backend as
well as model can impact both the FL performance metrics and
the system utilization footprint of the deployment.

5.4 Data and Compute Distribution

This experiment examines the impact of different data dis-
tributions and computational resources to FL performance.
We begin by considering the MNIST dataset and the Tensor-
Flow backend employing a CNN model. Next, we configure
FedBed with 2 partitioning strategies in the form of a homo-
geneous (denoted as Flat) and Pareto distribution. These will
be considered for both the dataset and the computational
resources. As metrics of interest, we consider the per round
training time, CPU, the number of data points (sample size),
and processing power for each FL client. In brief, processing
power refers to a client’s cumulative clock rate that is the
number of cores multiplied by the CPU frequency. Fig. 10 de-
picts the results of the experiment runs. Specifically, Fig. 10a
focuses on the FL deployment where a Flat distribution is im-
posed to both the dataset and computational resources. This
is an ideal scenario where no heterogeneity is evident; hence,
the load is equally distributed with the clients finishing local
training simultaneously. Moving to Fig. 10b, we observe that
adding data skewness to the data partitioning (via a Pareto
distribution) while maintaining fairness in the processing
capabilities, introduces a notable impact to training perfor-
mance. Here, the clients with more data are now bottlenecks
with the others finished and remaining idle till all mark the
round as completed and the aggregation process can start.
At this point one may ask “can we distribute the processing
power to to mitigate the effect of data skewness?’. The answer

aining Time CPU Utilization

0490001 PIveTELY

150

u é
8

1

=

noon

S

S

% w @ m o

o

Mmoo w oM™ s o w8 @ a0 o2 oM s 0 w7 e o nlo

(a) Flat Distribution of both Compute Resources and Dataset

Training Time CPU Utilization

=)

]
. %
o
‘&'9'3» Il
) = — o o 9 ! I
- & . e m o

moo om om s e m e s oM 7w

5

Bl

Data Points Processing Power

5
20k
156
106

s« 106

o o

oM omooM s o w0 oo Mmoo m M s oM w8 a0

(b) Flat Compute Resources and Pareto Dataset Distribution

Training Time CPU Utilization
3

|psesesd O HOLAR0G0

nlo

B

=11
ol
2dle
(il
olb
<o
a1 koo o
3| fle@ @o

Data Points Processing Power
a0k

E
20k
5 10k

Mmoo @ oM s s w o @ o O T R R T R)

(c) Pareto Distribution of both Compute Resources and Dataset

Figure 10. Impact of Data and Computational Skewness

to this lies in the findings of Fig. 10c where we observe that
when clients feature more processing power, they can accept
a larger portion of the data load without imposing delays
in the training performance. In conclusion, (i) the ideal case
for training time and predictable utilization in FL workflows
is to distribute data and processing homogeneously; (ii) with
homogeneous compute resources, the data distribution dictates
the training time; and (iii) if the processing capabilities follows
the data distribution alleviates the effects of unbalanced data.

5.5 FL Stragglers and FL Clients Selection

Assessing the overall duration of Flat-Pareto deployment
(Fig. 10b), we observed the straggler node phenomenon,
where the slowest worker determines the overall round du-
ration of the FL process. In this case, n1 is the main straggler
with about 40s median training duration, followed by n2 (22s)
and n3 (17s). Next, we investigate how the proportion of cho-
sen nodes affects the performance of the FL execution. In
each iteration, the FL server picks a subset of available nodes.
We introduce different selection percentages of 20%, 50%, and
100% of the total nodes. The left graph in Fig. 11 illustrates
the distribution of the overall round durations for 50 rounds.
When all nodes are selected, node n1 heavily influences the
round duration, surpassing 41s. In the 50% selection, the me-
dian duration is about 32s, while the 20% selection results in
a slightly lower than 20s median. The right graph in Fig. 11
shows the loss for each configuration, displaying a similar

FedBed: Benchmarking Federated Learning over Virtualized Edge Testbeds

Round Duration Per Round Loss

50 [+] $050 100% —— 50% 20%
= | Soasq |
o L e | 1
2 ; : ; T i i —
2 0 10 0, %4 w0,
3 T
1
0 I 9005 - !
2
1o !
10 | =004 1
1 1
1] 1 25 30 35 40 45 501

20% 50% 100%

Rounds
Figure 11. Straggler Effects and Clients Selection Fraction

Round Duration Per Round Loss

50 Q ® I" Baseline [100%) —— FedProx (m=0.5)
j— 2 1 FedAvg FedProx im=1}
3

Seconds

Aug Awg Prox(.5) Prox(1)
(100%) (20%) (20%) (20%)

Figure 12. Straggler Effects and Aggregation Algorithms

consistent trend. The last 25 rounds notably show that the
loss for the 20% setup exceeds those of the other trails, with
the 50% and 100% setups yielding comparable outcomes.

Considering that the 20% node selection yields the opti-
mal round duration but results in the least favorable loss
when using our default aggregation algorithm (FedAvg), we
investigate the FedProx [12] aggregation algorithm as an
alternative. So, we replicate the same experiment involving
imbalanced data distribution and configure FedProx with
two different values for its proximal term, m=0.5 and m=1.
Fig. 12 (left) presents that the performance of the 20% node
selection maintains a consistent distribution in both FedAvg
and FedProx. Additionally, Fig. 12 (right) juxtaposes the loss
across all configurations. With the 20% client selection, it is
observed that FedProx, under both proximal term configu-
rations, slightly underperforms compared to FedAvg (20%).
Meanwhile, FedAvg with the complete dataset demonstrates
the most favorable outcomes. Thus, the selection of FL clients
influences FL duration and the ML metrics, with more sophis-
ticated methods not always providing better results.

5.6 Network Heterogeneity

Unlike high-speed network configurations found in data-
centers, the traffic of Edge computing is bound to irregularly
dense multi-tier networks to satisfy the exponential growth
of wireless data [16]. Hence, this experiment examines the
impact of network QoS to FL performance. For this, we capi-
talize on the topology of the baseline setup (Config-A) with
the FedBed experiment description extended to consider
2 ML Backends, PyTorch and TensorFlow. We employ the
(same) MobileNetV2 model to avoid accuracy comparison
among the 2 backends. The scenario is the following: FL train-
ing for 100 rounds over the CIFAR-10 dataset and during each
experiment a different RTT is employed as the main network
knob with RTT configured to «10/25/50/100/200/400ms».
Fig. 13 compares the 2 backends with the left axis show-
ing training duration in absolute numbers and the right-axis

UCC’23, December 2023, Taormina, Italy

mmm EnsorFlow = EnsorFlaw % (right)
PyTorch = PyTorch % (right)

Seconds

Increase (%)

10 25 50 100 200 400
Round-trip Time (RTT)

Figure 13. Network delay effect on FL training

PyTorch TensorFlow

B Client Testing
Client Training
server+Netwaork

Seconds
oB&88 8

10 25 50 100 200 400 10 25 50 100 200 400
Round-trip Time (RTT) Round-trip Time (RTT)

Figure 14. Fine-grain timings for CIFAR10

ratio increments. From this, we observe that the network
RTT clearly impacts FL. PyTorch exhibits slightly better per-
formance but as the network delay increases the gap closes,
and TensorFlow becomes the better backend for the extreme
case with an RTT of 400ms. Next, we employ FedBed mon-
itoring to explore where the backends consume effort and
the FL stage is influenced by RTT increments (Fig. 14). For
this FedBed captures the duration of: (i) the local training
per client; (ii) the local testing time to derive model loss over
local data; and (iii) the server-side time for the receipt of the
client weight vectors and the aggregation. First, it is evident
that local training is what dominates an FL round. Second,
the TensorFlow testing stage is faster than PyTorch, whereas
PyTorch performs slightly better in terms of local training
and overall duration. Third, as expected, local training and
testing are not affected by the RTT increment. Fourth, when
the RTT surpasses 100ms, the server-side effort increases
exponentially, and this significantly impacts the overall FL
round duration. Hence, improving the clients’ computational
capacity lowers the local training effort, but the server-side
effort will remain and attribute a larger percentage of the
overall round duration. In terms of network i/o0, PyTorch traf-
fic was elevated by 6% in comparison to TensorFlow signify-
ing why at 400ms RTT the latter performed better (Fig. 13).
In conclusion, server-side aggregation and network delay im-
pact FL attributing to at least 10% of the training effort and
exponentially increasing as the network delay surpasses 100ms.

6 Related Work

There are numerous testing tools that support Edge Com-
puting emulation in virtual environments (e.g., cloud clus-
ters) with resource and network shaping. For instance, sys-
tems, like MockFog [8], Fogify [21] and Frisbee [16], take
advantage of cloud resources to create large-scale multi-
host testbeds offering realistic compute and network re-
source emulation, allowing ad-hoc network changes, mobil-
ity, faults introduction, etc. Targeting the trials reproducibil-
ity, E2Clab [19] offers integration with various systems, in-
cluding kubernetes, and allows users to auto-deploy work-
loads on testbeds emulating user-defined network QoS. Even
if these tools provide realistic execution, offer reproducible ex-
periments, and alleviate difficulties of application performance

UCC’23, December 2023, Taormina, Italy Moysis Symeonides, Fotis Nikolaidis, Demetris Trihinas, George Pallis, Marios D. Dikaiakos, and Angelos Bilas

evaluation, they do not automate the deployment of FL work-
loads and do not provide FL-specific performance metrics.
Moreover, there are many evaluation and execution FL
frameworks from the ML community. For instance, LEAF [3]
introduces a range of FL training workloads and datasets,
while FATE [14] and Flower [2] provide interoperability
for ML models and extensibility via well-defined interfaces.
Commercial Cloud-MLOps frameworks, like SageMaker [1],
offer various testing features, including FL evaluation, but
they lack customizable network properties and resource dis-
tribution, limiting evaluation to fixed compute nodes. More-
over, FedScale [10] offers a wide range of data partitioning
methods and introduces network and resource heterogeneity
at scale. However, its resource shaping is not implemented
via realistic emulation but via simulated artificially injected
delays. EdgeTB [24] is the only effort that combines dis-
tributed learning in virtualized testbeds, but it leaves unex-
plored implications for ML backends and models, without
focusing solely on FL. So, except for FedBed, there is no testing
framework that examines the Edge Computing implications
on FL workflows, providing configurable models and datasets.

7 Conclusion

This paper introduces FedBed, a testing framework for FL
workloads on virtualized Edge testbeds, addressing resource
heterogeneity, network availability, AI/ML backends, and
data distribution challenges. It facilitates the reproducible
evaluation of both software and infrastructure configura-
tions, encompassing the setup of emulation testbeds, param-
eterization of experiments, and real-time monitoring of FL
processes and edge infrastructures. During our experimenta-
tion, we examined how well models and libraries perform in
terms of scalability, data distribution, and network aspects. In
the future, we plan to use FedBed on real-world setups with
different devices, like sensors, mobile devices, and GPUs, and
test more generic FL tasks, like natural language processing.

Acknowledgments

This work is supported by the Cyprus Research and Inno-
vation Foundation (CODEVELOP-ICT-HEALTH/0322/0047)
and the Horizon Europe Framework (dAIEDGE/101120726).

References

[1] Amazon. 2023. https://aws.amazon.com/sagemaker/.

[2] Daniel J. Beutel, Taner Topal, Akhil Mathur, Xinchi Qiu, Javier
Fernandez-Marques, Yan Gao, Lorenzo Sani, Kwing Hei Li, Titouan
Parcollet, Pedro Porto Buarque de Gusmao, and Nicholas D. Lane.
2022. Flower: A Friendly Federated Learning Research Framework.
arXiv:2007.14390 [cs.LG]

Sebastian Caldas, Sai Meher Karthik Duddu, Peter Wu, Tian Li,
Jakub Koneé¢ny, H. Brendan McMahan, Virginia Smith, and Ameet
Talwalkar. 2019. LEAF: A Benchmark for Federated Settings.
arXiv:1812.01097 [cs.LG]

Yae Jee Cho, Jianyu Wang, and Gauri Joshi. 2020. Client Selection
in Federated Learning: Convergence Analysis and Power-of-Choice
Selection Strategies. arXiv:2010.01243 [cs.LG]

—
w
[t

—
S
flaar?

[5] Dimitrios Dimitriadis, Mirian Hipolito Garcia, Daniel Madrigal, An-
dre Manoel, and Robert Sim. 2022. FLUTE: A Scalable, Extensible
Framework for High-Performance Federated Learning Simulations.

[6] FedBed. 2023. https://github.com/UCY-LINC-LAB/FedBed.

[7] Yansong Gao, Minki Kim, Sharif Abuadbba, Yeonjae Kim, Chandra

Thapa, Kyuyeon Kim, Seyit A. Camtep, Hyoungshick Kim, and Surya

Nepal. 2020. End-to-End Evaluation of Federated Learning and Split

Learning for Internet of Things. In SRDS. IEEE, China, 91-100.

J. Hasenburg, M. Grambow, E. Griinewald, S. Huk, and D. Bermbach.

2019. MockFog: Emulating Fog Computing Infrastructure in the Cloud.

In IEEE ICFC. IEEE, Prague, Czech Republic, 144-152.

[9] Sai P. Karimireddy, Satyen Kale, Mehryar Mohri, Sashank]J.
Reddi, Sebastian U. Stich, and Ananda T. Suresh. 2021. SCAF-
FOLD: Stochastic Controlled Averaging for Federated Learning.
arXiv:1910.06378 [cs.LG]

[10] Fan Lai, Yinwei Dai, Xiangfeng Zhu, Harsha V. Madhyastha, and
Mosharaf Chowdhury. 2021. FedScale: Benchmarking Model and
System Performance of Federated Learning. In Proc. of the First Work-
shop on Systems Challenges in Reliable and Secure Federated Learning.
ACM, 1-3.

[11] LiLi, Yuxi Fan, Mike Tse, and Kuo-Yi Lin. 2020. A review of applications
in federated learning. Computers & Industrial Engineering 149 (2020).

[12] Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet
Talwalkar, and Virginia Smith. 2020. Federated Optimization in Het-
erogeneous Networks. arXiv:1812.06127 [cs.LG]

[13] Xiang Li, Kaixuan Huang, Wenhao Yang, Shusen Wang, and Zhi-
hua Zhang. 2020. On the Convergence of FedAvg on Non-IID Data.
arXiv:1907.02189 [stat.ML]

[14] Yang Liu, Tao Fan, Tianjian Chen, Qian Xu, and Qiang Yang. 2021.
FATE: An Industrial Grade Platform for Collaborative Learning with
Data Protection. J. Mach. Learn. Res. 22, 1, Article 226 (jan 2021).

[15] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and
Blaise Aguera y Arcas. 2017. Communication-Efficient Learning of
Deep Networks from Decentralized Data. In Proceedings of the 20th
AISTATS, Vol. 54. PMLR, 1273-1282.

[16] Fotis Nikolaidis, Antony Chazapis, Manolis Marazakis, and Angelos
Bilas. 2021. Frisbee: A Suite for Benchmarking Systems Recovery. In
HAOC. ACM, New York, NY, USA, 18-24.

[17] Fotis Nikolaidis, Moysis Symeonides, and Demetris Trihinas. 2023.
Towards Efficient Resource Allocation for Federated Learning in Virtu-
alized Managed Environments. Future Internet 15, 8 (2023), 25 pages.

[18] Takayuki Nishio and Ryo Yonetani. 2019. Client Selection for Federated
Learning with Heterogeneous Resources in Mobile Edge. In ICC. IEEE,
Shanghai, China, 1-7.

[19] Daniel Rosendo, Pedro Silva, Matthieu Simonin, Alexandru Costan,
and Gabriel Antoniu. 2020. E2Clab: Exploring the Computing Contin-
uum through Repeatable, Replicable and Reproducible Edge-to-Cloud
Experiments. In IEEE CLUSTER 2020. 176-186.

[20] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L. Chen. 2018.
MobileNetV2: Inverted Residuals and Linear Bottlenecks. In IEEE/CVF
CVPR. IEEE, Los Alamitos, CA, USA, 4510-4520.

[21] Moysis Symeonides, Zacharias Georgiou, Demetris Trihinas, George
Pallis, and Marios D. Dikaiakos. 2020. Fogify: A Fog Computing Emu-
lation Framework. In IEEE/ACM SEC. IEEE, San Jose, CA, USA, 42-54.

[22] Ben Taylor, Vicent Sanz Marco, Willy Wolff, Yehia Elkhatib, and Zheng
Wang. 2018. Adaptive Deep Learning Model Selection on Embedded
Systems. In Proceedings of the 19th ACM SIGPLAN/SIGBED LCTES
(Philadelphia, PA, USA). ACM, New York, NY, USA, 31-43.

[23] Demetris Trihinas, Michalis Agathocleous, Karlen Avogian, and Ioan-
nis Katakis. 2021. FlockAl: A Testing Suite for ML-Driven Drone
Applications. Future Internet 13, 12 (2021), 24 pages.

[24] Lei Yang, Fulin Wen, Jiannong Cao, and Zhenyu Wang. 2022. EdgeTB:
A Hybrid Testbed for Distributed Machine Learning at the Edge With
High Fidelity. IEEE TPDS 33, 10 (2022), 2540-2553.

8

—

https://arxiv.org/abs/2007.14390
https://arxiv.org/abs/1812.01097
https://arxiv.org/abs/2010.01243
https://arxiv.org/abs/1910.06378
https://arxiv.org/abs/1812.06127
https://arxiv.org/abs/1907.02189

	Abstract
	1 Introduction
	2 Background
	2.1 The FL Process and Algorithms
	2.2 FL Challenges over the Edge Continuum

	3 The FedBed Framework
	3.1 Overview
	3.2 Composable FL Pipelines Modeling

	4 FedBed Layered Implementation
	4.1 FL Learning Layer
	4.2 Data Layer
	4.3 Execution Layer
	4.4 Cross-Layer Monitoring

	5 Experimentation Study
	5.1 FL Client CPU and Network Patterns
	5.2 Vertical & Horizontal Scaling
	5.3 Impact of ML Libraries and Models
	5.4 Data and Compute Distribution
	5.5 FL Stragglers and FL Clients Selection
	5.6 Network Heterogeneity

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

