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Abstract. The increasing demand for energy-efficient solutions in IoT
devices and edge computing calls for novel methodologies to generate ac-
curate power models for diverse devices, enabling sustainable growth and
optimized performance. This paper presents a methodology for creating
power models for edge devices and their embedded components. The
proposed methodology collects power and resource utilization measure-
ments from the edge device and generates both additive and regression
models. The methodology is evaluated on a Raspberry Pi 4 device us-
ing a smart plug for power monitoring and various benchmarking tools
for CPU and network sub-components. The evaluation shows that the
generated models achieve low error, demonstrating the effectiveness of
the proposed approach. Our methodology can be applied to any edge de-
vice, providing insights into the most efficient power consumption model.
The heterogeneity of edge devices poses a challenge to creating a global
power model, and our approach provides a solution for developing device-
specific power models. Our results indicate that the generated models for
Raspberry Pi 4 scored a maximum of 8% MAPE.

Keywords: Power Consumption · Power Modeling · IoT · Edge Com-
puting · Edge Benchmarking

1 Introduction

The Internet of Things (IoT) is an ever-growing paradigm that enables a vast
number of interconnected devices to communicate and share data. According to
[4], the number of IoT and edge devices is expected to reach 6.5 billion devices
by 2030, or a three-fold increase since 2020. According to Cisco Annual Inter-
net Report [1], by 2023 50% of all networked communication will account for
machine-to-machine communications. Therefore, the energy footprint of those
devices needs to be studied, and the estimation of their power consumption
is crucial for designing energy-efficient systems and optimizing their operation.
Energy-efficient design and operation of edge devices and systems can signifi-
cantly reduce the need for frequent battery replacement or maintenance.

One of the main challenges in estimating power consumption is the hetero-
geneity of edge devices [6]. A global model for power estimation is difficult to
create, and each device together with its attached peripherals must be indi-
vidually characterized. As edge computing becomes more prevalent, the energy
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consumption forecasting of edge devices is more crucial. For estimating the cu-
mulative energy footprint of large-scale geo-distributed edge deployments, we
need a tailored power model for every edge device. However, most studies on
power profiling of IT equipment focus on high-end devices [3]. More work needs
to be imposed on edge devices considering the vast amount and the fast pace of
increase that calls for efficient ways to estimate their power and carbon footprint.

In this study, we present a methodology for building power consumption mod-
els for edge devices, that takes into account the impact of their different hardware
sub-components. Our approach involves: (i) the execution of containerized stress-
ing processes dedicated for each hardware sub-component of the edge device as
defined by the user, e.g., CPU and Network I/Os, (ii) an end-to-end monitoring
sub-system that collects resource utilization and power consumption measure-
ments from the respective device, (iii) a machine learning pipeline, integrated to
our monitoring sub-system, capable of training various machine learning models,
including linear regression models, random forests, gradient boosting, etc, and
(vi) evaluation of the created models by executing real-world Machine Learn-
ing (ML) benchmarks and considering well-known evaluation metrics like Mean
Squared Error (MSE) and Mean Absolute Percentage Error (MAPE). It should
be noted that the users can select to create additive models composed of indi-
vidual models, each of which is dedicated to a specific hardware sub-component.

The main contributions of the current work are listed below.

1. A device-agnostic methodology that involves an end-to-end pipeline for gen-
erating power consumption models for edge devices and can provide insights
about the most efficient power consumption models. On top of that, we pro-
vide an out-of-the-box procedure for evaluating the most accurate power
models with real-world workloads using statistical error indicators.

2. A complete power consumption model for a well-known edge device, namely
Raspberry Pi 4, evaluating the applicability and accuracy of our methodol-
ogy with the results indicating a maximum MAPE of 8% and the models
being available to the research community, enabling broader adoption.

The rest of the paper is structured as follows: Section 2 provides details about
the related work. Section 3 describes our methodology. Section 4 provides tech-
nical details about the creation of the power model for an edge device (RPi 4),
and a real-world scenario evaluation. Finally, Section 5 concludes the paper.

2 Related Work

The process of power consumption modeling is a complex procedure that requires
the introduction of various stressors on top of edge devices while at the same
time, capturing resource utilization and power consumption measurements of the
edge device acting as the system under test (SUT). On top of that, researchers
need to build various statistical and ML models based on the captured metrics.
Considering the heterogeneity of edge environments, the latter procedure is time-
consuming and requires numerous manual configurations during deployment and



Power Estimation Models for Edge Computing Devices 3

ML training. Targeting both power consumption modeling and benchmarking of
edge devices, we present the state-of-the-art.
Edge benchmarking: This is the process of evaluating the performance of an
edge device under different workloads and configurations. In the context of edge
benchmarking, Kang et al. [9] made use of a Coral Dev Board that is equipped
with a Tensor Processing Unit (TPU) and a Jetson Nano that is equipped with
a Graphical Processing Unit (GPU) in order to run a set of AI applications over
them and evaluate their performance based on their inference speed, accuracy,
and power consumption. Similarly, Bekaroo et al. [5] performed a comparative
analysis of the power consumption of Raspberry Pi under different utilization lev-
els. In this study, the power consumption of Raspberry Pi was compared against
other workstations and results indicated that the power consumption of Rasp-
berry Pi was significantly lower than that of a desktop and a laptop and higher
than that of a smartphone and a tablet. Although the aforementioned studies
provide some key insights into the power consumption behavior of edge devices,
no further modeling of power consumption for those devices was performed.
Power consumption modeling: A power model is a mathematical represen-
tation of how much power a device or system consumes under various operating
conditions. It takes as input a set of parameters related to the device load, and
outputs an estimate of the device’s power consumption. Focusing on single-board
edge devices, Paniego et al. [11] created a power estimation model for Raspberry
Pi 3. The authors made use of a set of performance counters that reflect the
resource utilization of CPU and memory. Even if the evaluation results indi-
cated an average percentage error less than 5%, the authors did not consider the
power that is consumed by the network sub-components. On the contrary, Kaup
et al. [10] created power estimation models for various edge devices considering
both processing and network sub-components. They highlighted that the power
consumption of a single-board edge device can be described by multiple mod-
els dedicated to the underlying hardware sub-components. Unfortunately, the
latter efforts do not offer a general way for the creation of power consumption
models, leaving it up to the users to perform the device’s stressing, monitor the
sub-components utilization, and tune the parameters of the models.

3 Methodology

The generation of power consumption models for edge devices requires the in-
stallation and deployment of multiple software tools, their configuration, a set
of repeatable actions for stressing specific underlying components, the selection
of the proper ML or mathematical models and their parameters, the evaluation
of the generated models, and, generally, a lot of manual and time-consuming
steps. The main goal of this work is to abstract the generation of power con-
sumption models of diverse edge devices. To achieve the latter, we propose a set
of well-defined steps in our methodology workflow as shown in Fig. 1.

First, we created a monitoring and storage solution that captures both re-
source utilization metrics from the edge device under test and power consump-
tion metrics as provided by the power reporting tools. We achieved the latter
by providing abstract interfaces for user-defined monitoring probes and using
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Fig. 1. Workflow for Power Models Generation & Evaluation

containerization as our deployment strategy. To obtain a representative dataset,
our pipeline executes a set of repeatable benchmark workloads that utilize dif-
ferent components of the device, such as the CPU and network. In order for our
pipeline to execute the set of stressors in any compute node, the device bench-
marking sub-module executes them in a containerized environment. The module
executes repeatable stressing workloads under various configurable utilization
levels to ensure the statistical significance of the measurements.

Before the training of the models, our workflow pre-processes the collected
data in order to “clean” them. The pre-processing step includes the outliers de-
tection and removal. When the dataset is marked ready, the workflow propagates
it to the Model Generation module. This module is responsible for the genera-
tion of the selected models and auto-tunes their parameters based on the user’s
configurations. The output of the Models Generation module is a set of ML and
mathematical models capable of predicting the power consumption of an edge
device based on its resource utilization metrics.

Finally, in this evaluation step, the workflow deploys real-world containerized
workloads on the examined edge device and monitors its resource utilization. The
best-fit models are selected based on the accuracy reported when applied to the
collected results from the workload execution period.

3.1 Implementation Aspects

Data Monitoring & Storage. The deployment overview is illustrated in Fig.2
where the running services are presented next to each device involved in the de-
ployment stack. A monitoring agent is deployed on the edge device under test.
Specifically, we use the containerized version of Netdata, which is a lightweight
monitoring agent reported to have less than 1% CPU computational footprint, a
few hundred of MiB RAM requirements, and minimal disk usage [2]. When the
agent is deployed, it continuously collects the underlying resource utilization and
other monitoring metrics like CPU temperature by directly making use of the
host’s OS mechanisms reporting real-time metrics (cgroups, pseudofiles, etc.).
As a utilization metric for the CPU board, we chose to use the percentage of
the total CPU utilization based on the full capacity. For the network boards,
we use the kilobits sent or received per second (kb/s). For the accurate collec-
tion of the resource utilization metrics, we rely on the underlying monitoring
system which monitors CPU utilization by measuring the percentage of time
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the CPU has actually been executing machine code. The monitoring system can
also monitor the CPU frequency at runtime which can be taken into account
when creating power models for machines whose CPU architecture supports the
Dynamic Voltage and Frequency Scaling (DVFS) mechanism.

Moreover, we created a background process with extensible interfaces that
acts as a probe for the power consumption metering external system. It should be
noted that the edge device under test and the power meter should have a common
communication channel, e.g. both to be connected to the same WiFi network.
In our prototype, we integrated Meross 1 Smart WiFi plug to our system under
test, and we extended the respective connector interface to perform periodically
a remote call to the smart plug API retrieving real-time power measurements
and disseminating them to the monitoring agent. The periodicity of monitoring
is configurable with its default value being 1 second, providing more fine-grained
data to the next step. The results are then transmitted to a remote monitoring
storage server via HTTP requests. The monitoring storage utilizes a time series
database 2 allowing fast time range queries and is placed on a remote virtual
machine (VM) that provides ample processing and storage capacity.
Device Benchmarking. To test the separate components independently, we
encapsulate various benchmarks each of which is tailored to a specific compo-
nent. For the CPU, we use the stress Linux command3, which allows us to stress
the CPU at various utilization levels. The stress command has an optional pa-
rameter that runs all the stressors sequentially for a specified period of time as
defined by the user, with each stressor being executed by a separate CPU thread.
Therefore, we ran the stressors sequentially using 1...N CPU threads, where N
is the maximum number of threads that the specified CPU can run in parallel.
Following this approach, allowed us to capture different CPU utilization states
at different time scales. It is worth mentioning that during the CPU stressing,
the rest of the device components are going through low utilization with minimal
power overhead that does not affect the overall performance of the device.

For the network interfaces, the iperf tool 4 was integrated to transmit pack-
ages between the edge device and another device acting either as a client or

1 http://bit.ly/3LvNO76 2 http://prometheus.io
3 http://linux.die.net/man/1/stress 4 http://iperf.fr/

http://bit.ly/3LvNO76
http://prometheus.io
http://linux.die.net/man/1/stress
http://iperf.fr/
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server, that is connected to the same local network via either wired or wireless
communication channels. For the purposes of this test, in one case the device
under test acted as a client, sending network packets at a specified rate while
measuring outward traffic. In the second case, the device acted as a server receiv-
ing packets at a specified rate while monitoring inward traffic. For the automation
of the stressing procedure, the stressor gradually increases the bandwidth speed
and runs each iteration for a total of 15 minutes in the case of WiFi which has
limited bandwidth availability and 10 minutes in the case of Ethernet by default.

Data Collection, Cleaning & Preprocessing. Our method measures power
consumption by first determining the idle power consumption of the system
when all components are idle and monitoring services are active. The device
collects power measurements from the power monitoring device via the WiFi
channel and communication with the storage agent is done via the Ethernet.
Once idle power consumption is obtained, we collect CPU benchmarking results
using relevant timestamps. For network power estimation, we execute network
benchmarks and gather network and CPU utilization statistics, as well as the
overall power consumption of the device. To estimate power consumption specific
to network components, we subtract idle power consumption and CPU-related
power consumption using the generated CPU power model. Due to asynchronous
data collection, a minimal number of outliers are observed. By default, outliers
are defined as points more than 3 standard deviations from the mean and are
removed prior to the training procedure for both training and evaluation data.

Models’ Training & Evaluation. In the models’ generation step, the users
can specify the type of models they want to create, including additive models
consisting of separate models for each of the individual device’s sub-components,
multiple regression models that take as input the set of input variables repre-
senting resource utilization metrics in this case, or ensemble models like Ran-
dom Forests, along with their parameters for training and tuning. Users can
also select specific monitoring metrics from the device’s sub-components to be
included in the modeling procedure. Since our methodology is agnostic to ML
and mathematical models, users can make use of different libraries and model
types including among others Random Forest, Linear Regression, or even Deep
Learning (DL) methods. With the models, possible parameters, and input de-
fined, the next step is the training of the selected models. Once the training
procedure is complete, the generated models are returned to the user along with
the respective performance indicators, such as MSE and MAPE. Before evalu-
ating the models that were found to be more accurate, users can fine-tune the
parameters of the respective models with the use of any tools dedicated to hy-
perparameters’ auto-tuning. An example parameter is the number of estimators
used in the construction of a random forest. This flexibility allows users to gen-
erate power models tailored to edge devices, adjusting the models’ parameters
and optimizing their accuracy.

Except for the simple or more advanced ML approaches, the Model Gen-
eration module allows users to create an additive power model. Eq. 1 defines
an additive power model for CPU and network sub-components where PCPU(u)
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represents the CPU’s power consumption when it is in use at a certain utiliza-
tion rate u in %, Peth,dn(r), Peth,up(r), Pwifi,up(r), Pwifi,dn(r) represent the power
consumption of Ethernet and WiFi download and upload links when in use at a
certain rate r in kb/s, and Pidle the idle state power consumption in Watts.

Psystem = PCPU (u)+Peth,dn(r)+Peth,up(r)+Pwifi,up(r)+Pwifi,dn(r)+Pidle (1)

Models’ Evaluation on a Real World Application. Our methodology sup-
ports the evaluation of models using containerized workloads, offering flexibility,
and abstracting the underlying device’s heterogeneity, without resource over-
head [8]. By default, our approach utilizes two popular ML inference work-
loads [7]. The first is the Image Classification and Detection (ICD) workload
[12], part of the MLPerf benchmark suite, which includes real-world ML appli-
cations for inference. Users can customize workload parameters such as image
count, inference model, and ML backend. Our example configuration in section
4 employs 1000 images for inference with the resnet50 model 5. The ML backend,
like TensorFlow, provides tools and APIs for ML model building and training.
To ensure compatibility with ARM-based edge devices, we made the necessary
adjustments to the Dockerfile of the selected workload. Our second workload
involves a lightweight Python server 6 exposing an API for a simple yet real-
istic ML inference service. A workload generator disseminates images over the
network for inference. The edge device under test runs the service, while the im-
age workload generator acts as a client, loading images into memory and sending
them for inference over the network. The devices are interconnected via Ethernet
and WiFi networks. The user applies the most accurate power models from the
model generation step to the collected data during workload execution, compar-
ing estimated and actual power consumption. The output includes error metrics
and plots demonstrating model performance on independent workloads.

4 Real World Use Case

4.1 Experimental Setup

The experimental setup is comprised of a Raspberry Pi 4 that serves as the
System Under Test (SUT) and is powered by the Meross Smart Plug. The device
is equipped with a quad-core ARM Cortex-A72 CPU, 4GB of RAM, and a 32GB
SD card for storage. Raspberry Pi 4 is considered an edge device that can be
used by a variety of edge applications including ML applications. The SUT is
equipped with a Gigabit Ethernet interface with a bandwidth of 1 Gbps and an
integrated dual channel (2.4 GHz and 5 GHz) wireless antenna. The device’s idle
power consumption was found to be 3.10W.

4.2 Generated Models

For the purposes of this study, we created i) an additive model that is composed
of CPU and network models and two regression models, ii) a random forest

5 http://bit.ly/45Dzbr0 6 http://flask.palletsprojects.com

http://bit.ly/45Dzbr0
http://flask.palletsprojects.com
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Fig. 3. Distribution of CPU utilization and power consumption with fitted line

with two hyperparameters (number of estimators and max depth) for which
we applied hyperparameter tuning using the Ray framework 7, and iii) a linear
regression model. Both regression models take as input the set of parameters
and as output the estimated power consumption of the device. The training of
the two regression models was performed using scikit-learn8, by applying cross-
validation, splitting input dataset at 80% training and 20% test data. For the
additive models, we fitted polynomials with multiple degrees, using the numpy
polyfit function 9 and we selected the ones with the lowest MSE and MAPE.
CPU: Fig. 3 shows the distribution of CPU utilization and power consump-
tion of the SUT. The set of points is distributed across all the CPU utilization
values. The red line represents the regression line that was fitted to the data
to represent the linear relation of the CPU utilization relevant to the respective
power consumption. It was found that the linear regression model had an MSE
of 0.098 and a MAPE of 17% when applied to the collected data. It can also be
observed that the maximum power drawn by the CPU component is just above 3
Watts. The linear regression model for CPU utilization and Power Consumption
in Watts (PCPU(u)) is represented in the equation Eq. 2 below, where parameter
u represents the CPU utilization (%).

PCPU (u) = 0.025u+ 0.17 W (2)

Network: In Fig. 4, we provide the distribution of Ethernet and WiFi utiliza-
tion rates relevant to the respective power consumption along with a red line
that represents the polynomial regression model fitted to the data in each case.
The observed gaps on all the diagrams are due to the scaling we perform for
sampling for rates above 100Mbps in order to obtain an even distribution of
sample rates. In the case of WiFi we were able to achieve a rate of a maximum
of 25Mbps for download and 50Mbps for upload links.

In the case of Ethernet, it was found that the best fit was a third-degree model
with an MSE of 0.0035 and 0.004, which correspond to 2.95% and 4.61% MAPE
for download and upload links respectively. For low values of network utilization,
the estimated power overhead is negative due to the error that exists in the
estimation of CPU power overhead that overestimates the power consumption in

7 https://ray.io/ 8 https://scikit-learn.org/ 9 https://bit.ly/3HE06ZK

https://ray.io/
https://scikit-learn.org/
https://bit.ly/3HE06ZK
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Fig. 4. Distribution of Network Resource Utilization and Power Consumption

some cases where CPU utilization is low. Overall, we conclude that the Ethernet
power overhead is minimal even in the case that the link is undergoing full
utilization in which case the increase of power consumption is relatively low.
Another thing that is important to note here, is that packet loss is observed
during the transmission of packets through the Ethernet channel, especially at
high rates where the loss can reach up to 3.5% of the total packages. This can
add some noise to the data. On average the maximum allowed stable bandwidth
we could achieve was at 600Mbps. From the top plots in Fig. 4, we can observe
that in the case of upload, there is a deviation downwards at 500Mbps while in
the case of upload, there is a flattening up to the same rate before the power
consumption is increased again. One intuitively understands that the system
follows an optimization strategy when sending and receiving data over the link.

In the case of WiFi, due to the high amount of packet loss that exists on
the network link, we have not been able to identify a proper distribution in the
case of the receiver which was acting as the iperf server so we decided to omit it
from our additive model since the power overhead was minimal and close to idle
value. Also, the available bandwidth was significantly lower than in the case of
Ethernet. This was mainly caused by the weakness of the onboard WiFi antenna
to perform well at higher speeds. The usage of an external WiFi module would
possibly fix this limitation although it would cost an extra overhead for powering
it on. One thing that is noticeable in the case of WiFi is the power consumption
that is imposed in the case of heavy load during upload that accounts for a non-
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Fig. 5. Actual vs estimated power consumption for inference over WiFi

Fig. 6. Actual vs estimated power consumption for inference over Ethernet

negligible 1.5W marginal power. The best fit for WiFi upload is a second-degree
polynomial with an MSE of 0.0054 and a MAPE of 0.015%.

The generated polynomial models for network interfaces are provided below
where r represents the network utilization rate at kilobits sent or received per
second and functions Peth,dn, Peth,up, Pwifi,up the respective power consumption
in Watts for Ethernet download, Ethernet upload and WiFi upload links.

Peth,dn(r) = 2.39 · 10−18 · r3− 3.51 · 10−12 · r2+1.65 · 10−6 · r− 1.7 · 10−1 W (3)

Peth,up(r) = 5.04 ·10−18 · r3−6.82 ·10−12 · r2+2.55 ·10−6 · r−1.96 ·10−1 W (4)

Pwifi,up(r) = −2.03 · 10−10 · r2 + 4.06 · 10−5 · r − 3.16 · 10−1 W (5)

4.3 Evaluation of the results

Inference over WiFi: Fig. 5 presents the experimental results after applying
our models to the set of data collected during the execution of the inference
workload over WiFi. The linear regression equation is included in the legends of
the graphs where X represents CPU utilization (%) and Y the network utilization
rate (Kb/s). The number of data points retrieved from the storage agent for both
the sender and the receiver was totaled at 5400 in order to ensure a good sample
size while avoiding missing important information. The red line represents the
perfect prediction where the estimated value equals the actual value. In the
case of the sender, the additive model performed better than the rest with an
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Fig. 7. Actual vs estimated power consumption for inference on the device

MSE of 0.0035 and a MAPE of 1.15%, while in the case of the receiver, the linear
regression model outscored the rest with an MSE of 0.0288 and MAPE of 3.44%.
In terms of the estimated energy, the additive model reported a total of 36469.02
J while the actual reported energy was 36310.92 J and the linear regression
model reported a total of 38538.44 J compared to the total actual consumption
of 38244.78 J. This is due to the high error that is observed for the additive model
for low power consumption values. Also, for high power consumption values, the
Random Forest cannot perform as expected. This might be due to the linear
relationship between CPU utilization and power consumption which can make
it difficult to be accurately captured by the Random Forest. To this end, CPU
utilization is the main contributor to the system’s power consumption which is
better captured by the additive and linear regression models.
Inference over Ethernet: The relevant results for the execution of the in-
ference workload over Ethernet are presented in Fig. 6. The same number of
samples as in the case of WiFi was collected, for the same reason. In the case
of download over Ethernet, all the models tend to underestimate the predicted
value while in the case of upload, they tend to overestimate it in most of the
cases. The reported results indicated that the additive model was by far the
most efficient for estimating the power for images loaded and sent over Ethernet
with a recorded MSE of 0.0227 and a MAPE of 3.65% while on the other side
for the receiver performing the inference, the Linear Regression model recorded
the lowest error with an MSE of 0.0739 and 4.33% MAPE. The energy consump-
tion values of the aforementioned models were estimated to be 36744.10 J and
48712.32 J in the cases of the sender and the receiver while the actual reported
energy consumption was found to be 35552.26 J and 49887.45 J respectively.
Inference on the device: For local inference, the experiment was repeated at
different CPU utilization levels by limiting the CPU utilization of the container
in each iteration at a scale of 10%. As we lower the CPU utilization, the execution
time increases and that is why the majority of data points lie in the area between
3 and 4 Watts. The total number of points collected in this case was 10800, due
to the multiple iterations performed. The additive and linear regression models
return the same results since there is no network overhead. Evaluation results
for this scenario are illustrated in Fig. 7. One thing to point out is the fact
that the linear model performs really well at high values where utilization is
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high while slightly overestimating the values close to idle resource utilization.
In this case, the MSE and MAPE were 0.1003 and 8.06%, respectively and the
generated models estimated a total of 87254.52 J while the total reported energy
consumption based on the power meter readings was 81363.12 J.

5 Conclusion
This work presented a methodology for generating and evaluating power con-
sumption models for edge devices. Our methodology can generate both additive
and regression models, and we highlighted its effectiveness by creating accurate
power consumption models for a Raspberry Pi 4, and by performing ML infer-
ence from a real-world application. Our methodology is useful for creating and
evaluating power models for a wide range of edge devices, enabling better energy
efficiency and sustainability. Future work includes the creation of an automated
tool adopting the pipeline of the proposed methodology, and making use of it for
more devices and attached components, like cellular communication. Moreover,
we plan to conduct an evaluation of the power consumption of edge applications
by integrating power consumption models with evaluation tools like emulators.
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