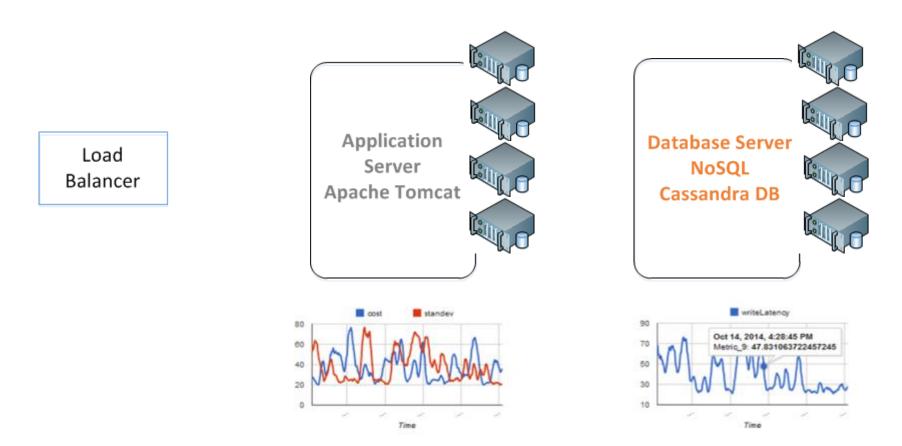


Topology Aware Analytics for Elastic Cloud Services

Foudoulis Athanasios

athafoud@cs.ucy.ac.cy

Master Thesis Presentation May 28th 2015, Department of Computer Science, University of Cyprus

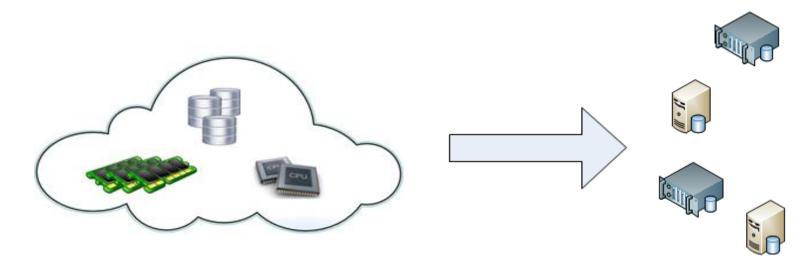

In Brief..

a Tool providing Performance and Cost Analytics for Elastic Cloud Services using Monitoring and Cost Data and utilizing the Cloud Service Topology

In Brief..

Foudoulis Athanasios

Presentation Outline

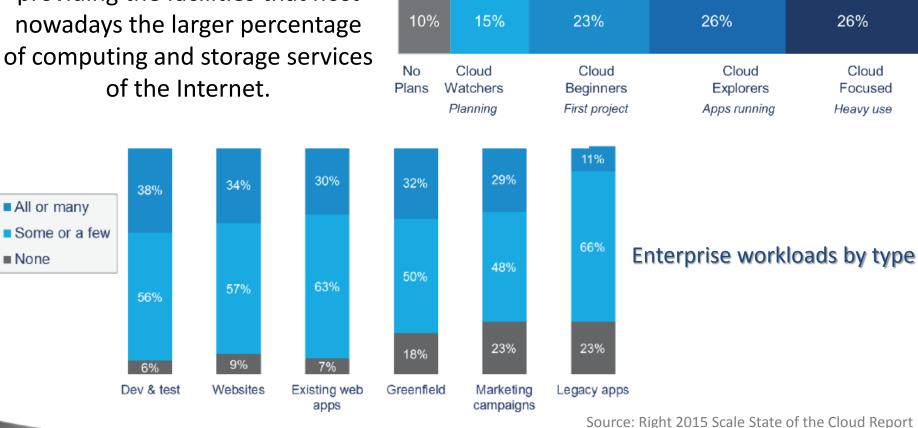

- Cloud Computing and Cloud Analytics
- The gap in Cloud Analytics Tools
- Our Approach
 - Design / Implementation
 - Evaluation
- Conclusions & Future Work

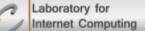
Cloud Computing

- Provides a shared pool of physical resources
 - data storage space, networks and computer processing power
- Utilized to run virtualized resources

Cloud Computing Economics

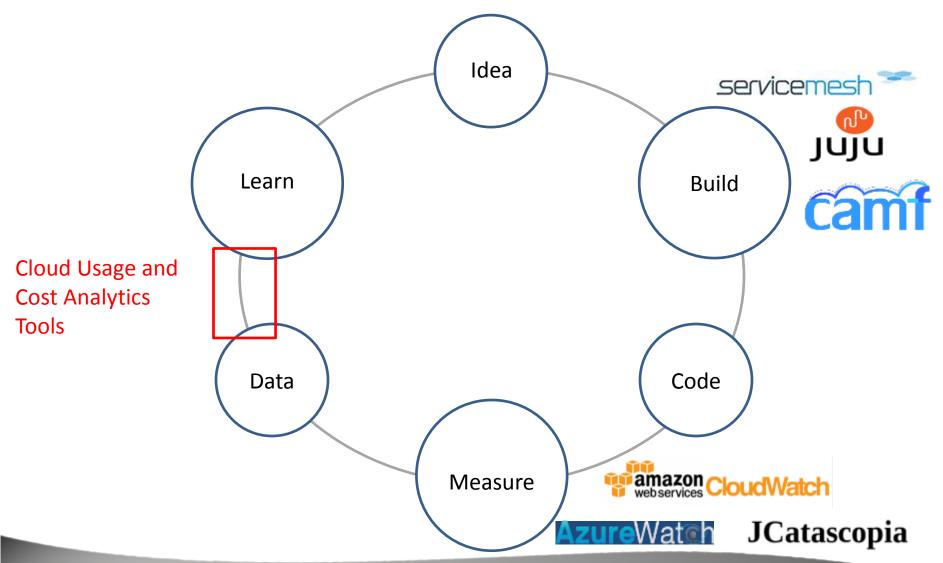
- Biggest advantages of cloud computing
 - Rent on demand resources
 - reduce bare metal machines maintenance costs
 - Pay as you go
 - initial cost is minimal
 - over-cost "easily" manageable




Cloud popularity

Cloud computing is responsible for providing the facilities that host nowadays the larger percentage of computing and storage services of the Internet.

Cloud Maturity of Responders



Foudoulis Athanasios

Cloud Service Development Lifecycle

What is Analytics?

The process of applying **mathematics** and **statistics** over a set(s) of data and the **visual representation** of the extracted information.

Web analytics (e.g. Google)

Business Analytics (e.g. SAP)

Analysis + Tops + 18000 + 04. Accounts + 1 incoming payments + 1 Margina

Website Traffic and Visit

Sales of a product

Cloud Analytics

- Insights into application behaviour
 - assist users to improve application performance, resource utilization and thereby reduce cost
- Increase of demand from cloud analytics
 - More than 1,000 customers in RightScale Cloud Analytics platform after a month announced

Analytics Insights

- Utilization / Performance
 - Usage

Laboratory for

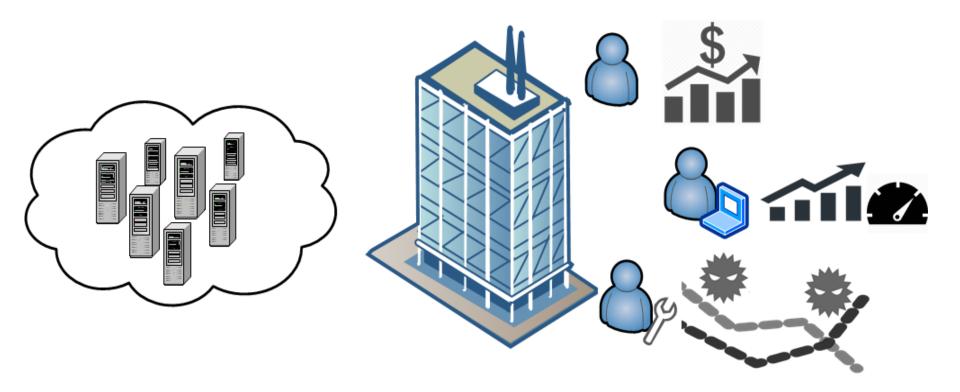
ternet Computing

- e.g. ram or disk used in GB, cpu load in percentage
- State of a resource over time
 - Short and long term trends
- Visualizations intercepting the data input rate (e.g. requests/sec) and the resource\ usage (CPU, memory usage)
- Cost
 - Cost per hour/month/year
 - Cost change over the time

But Still – Lack of Visibility

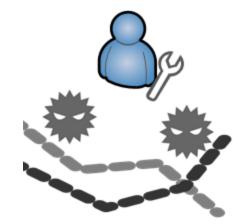
"87% of deployments found underutilized in terms of CPU, Memory, I/O and Network"

"Instances are underutilized with average utilization rates between 8-9%"


"Difficult for user to digest analytics data, as cloud deployments scale out to massive sizes"

> The Big Data Group – Survey 2014 Cloudyn – White Paper: The Great Hope of Cloud Economics

Different Users – Different Needs



IT Staff – Maintainers

IT Staff – Maintainers

Laboratory for Internet Computing

• Forensic analysis of an incident, primarily uses monitoring data

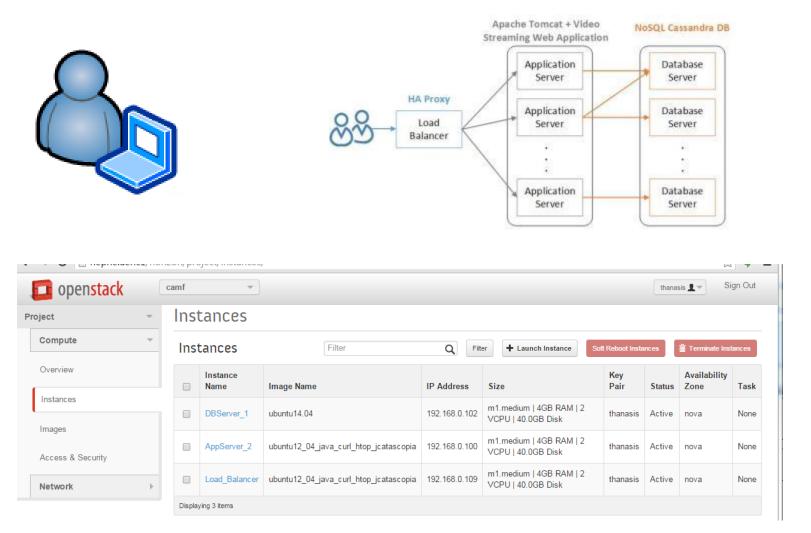
• Analytics for anomaly detection e.g.

in request rate to identify dos attacks

Different Users – Different Needs

- Application Developers
 - Optimize / Fine-tune cloud Services
 - Configure Cloud Service Elastic
 Behavior (e.g. set rules / thresholds)

Different Users – Different Needs


- Department Manager
 - Expenses management for the
 - departments Products / Services

Single / Overall deployment(s) cost

Develop and Deploy

Laboratory for

Internet Computing

Develop and Deploy

All Insta	ances		
Instance	S	Project Filter C	
Host	Image Name	IP Address	Size
nephelaecc	ubuntu14.04	192.168.0.102	m1.medium 4GB RAM 2 VCPU 40.0GB Disk
nephelaenc5	ubuntu12_04_java_curl_htop_jcatascopia	192.168.0.100	m1.medium 4GB RAM 2 VCPU 40.0GB Disk
nephelaenc5	ubuntu12_04_java_curl_htop_jcatascopia	192.168.0.109	m1.medium 4GB RAM 2 VCPU 40.0GB Disk
nephelaenc5	Windows Server 2012 R2 Std Eval	192.168.0.13	m1.medium 4GB RAM 2 VCPU 40.0GB Disk
nephelaenc5	centos6.4x86_64	192.168.0.121	m1.medium 4GB RAM 2 VCPU 40.0GB Disk
nephelaenc5	centos6.4x86_64	192.168.0.119	m1.medium 4GB RAM 2 VCPU 40.0GB Disk
nephelaecc	ubuntu14.04	192.168.1.62	c2.medium 4GB RAM 6 VCPU 20.0GB Disk
nephelaenc3	ubuntu14.04	192.168.0.26	m1.large 8GB RAM 4 VCPU 80.0GB Disk
nephelaenc3	ubuntu14.04	192.168.0.25	m1.large 8GB RAM 4 VCPU 80.0GB Disk
nephelae	ubuntu14.04	192.168.1.57	m1.medium 4GB RAM 2 VCPU 40.0GB Disk
nephelae	ubuntu14.04	192.168.1.58	m1.medium 4GB RAM 2 VCPU 40.0GB Disk
nephelae	ubuntu14.04	192.168.1.56	m1.medium 4GB RAM 2 VCPU 40.0GB Disk
nephelae	ubuntu14.04	192.168.1.55	m1.medium 4GB RAM 2 VCPU 40.0GB Disk
nephelaenc2	ubuntu14.04	192.168.0.20	m1.xlarge 16GB RAM 8 VCPU 80.0GB Disk

Cloud Service Analytics

<i>2</i>	cost	usage	manage			Select View +	🕦 Hi, Jerry Catron 🛛 🔅	
						Show Tour	Export 🔻 🧹 Save	
custom	+	Utilizat	ion: CPU U	tilization	/	7/30	/2013 - 8/06/2013 🔻	
for Env Avg Est Hourly	×				-			
r env PU under 25%	×	20.00%						
leavy RI andidates by legion	×	10.00%						
leavy RIs in roduction	×							
iourly RI fanning	×	0.00%	07/31	06/01	08/02	08/04	06/05	
istance size by egion with cpu	×							
istances by IO, Iours, BW	×	AVIGOPULITIZZATION (?)						
ow CPU & low isk candidates	×			2	5.49%			
roduction Env candidates report	××××	Filters: (D					
leporting	×							
eporting	×	512	ΕV	INSTANCE ID 1	AVG CPU	UTILIZATION V 🕒 🕒		
stance tilization		0 m	1.large	i-7560a515			78.37%	
ervice by istances + Cost	×	0 m	1.large	i-2ba8dc46			77.99%	
taging Instance Isage	×	• m	1.large	i-026d2f6e			77.99%	
nderutilized	×	• <u>m</u>	1.large	i-2960a549			77.49%	
inderutilized	×	0 m	1.large	i-24291b4f			76.39%	
vod inused Dev	×	• m	1.large	i-e79eac88			75.10%	
nstances under I0 CPU		• m	1.large	i-059eac6a			75.01%	
n1.xlarge	×	0 <u>m</u>	1.large	i-1fe66970			74.51%	

- Analytics Per Instance
 - CPU utilization
- Possible Aggregation
 - Per Tenant
 - Per Cloud Project
 - Per Region

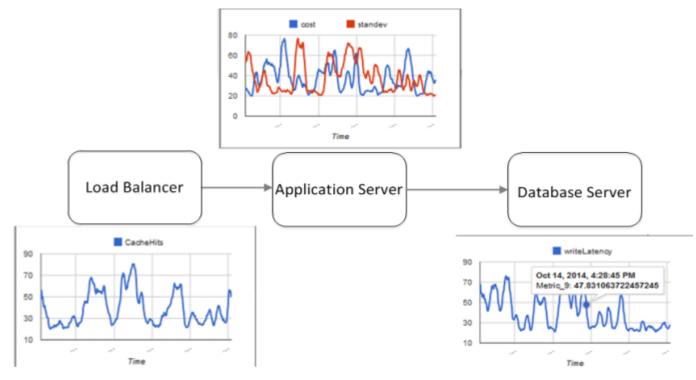
Laboratory for

nternet Computing

Cloud Service Analytics

- Find which instance under-performs
- Identify the most costly project
- Pinpoint which tenant cost less

Helpful for IT Staff and Managers Insufficient for Developers


- Can not easily focus on single deployment
- Can not optimize a single application tier (e.g. database)

Visualizations Based on Service Topology

Designing User-oriented or User-centric Interfaces can increase the user experience

*From Human Computer Interaction (HCI) literature

cloudability

cloudvertical

teevitv

Cloud²ware

Advance over State-of-the-Art

Right scale

Cloudyn

CloudCheckr

- Focus is driven on
 - Resource performance visualization
 - Total application cost visualization
- State of the Art not aware of application topology
 - Insights limited to application level
 - Multi-grain performance evaluation is not available
 - (e.g. how scaling one tier affects the cost of another tier)

Our Proposal

- An analytics tool
 - Aim helping Cloud Service Developers
 - Provide an additional view of the existing information.
- Cloud Service Topology The keystone of our tool
 - a way to graphically represent the blueprint of a cloud service.

Our Proposal

- Extract insights, such as the trend of the data
- Apply statistical calculations,
 - In the time-series formatted data

Leverage Service Topology

- Enhance metrics data with service topology
- Provide fine-grained analytics.
 - Per tier Analytics (useful to identify bottlenecks or possible bottlenecks)
 - How one tier can affect others

Support elastic applications

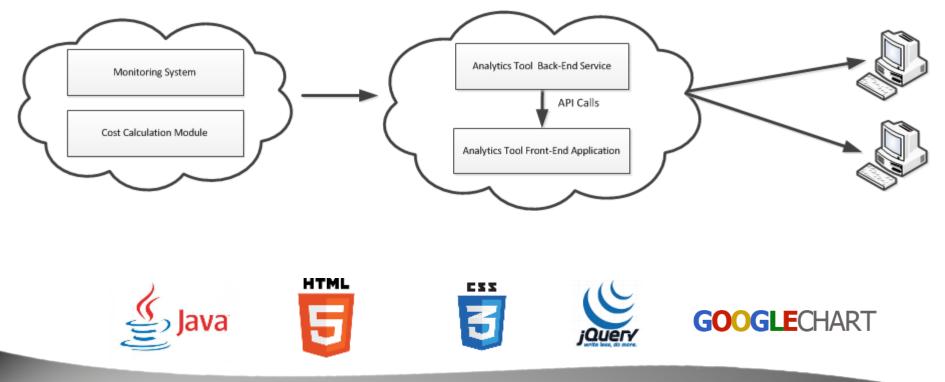
- Exploit cloud elasticity
- More detailed analytics for the cloud application lifecycle.
 - Help understand what it may seem abnormal behavior
 - Use elasticity actions as time bookmarks to navigate through the deployment

Functionality / Requirements

- Calculate analytics for a cloud service deployment
- Visualize and Map analytics on the service topology
- Integrate different data sources (e.g. usage and cost metering data)
- Understand and expose the elastic nature of a service
- Respond in a timely manner

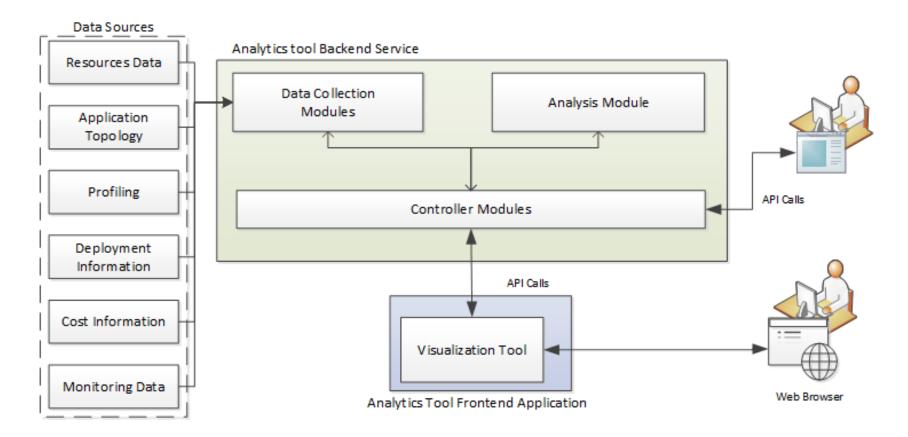
Laboratory for Internet Computing

Implementation


- Two components
 - Back-end (Computation Layer)
 - Retrieves data from the configured data-sources
 - Combines and Analyzes the data
 - Exports the enriched data via a REST API.
 - Front-end (Presentation Layer)
 - Helps the user interact with the Backend Service
 - Presents the information in a unified and descriptive manner

The Analytics Tool

Runs as a Cloud Service



May 28th 2015, University of Cyprus

Architecture

Data Collection

- Provides
 - A set of interfaces in order to ensure the needed abstraction
 - A set of data objects to help communication of the "internal" modules
- Interacts with "external" data sources to get data
 - Monitoring System
 - Cost calculation Module
 - File System
- Transforms the data to the "internal" structures

Analytics Calculation

- Statistical analysis over time-series data
- Common methods like MIN, MAX, MEDIAN, MEAN, SD and COUNT
 - Based on apache.common.math

- Additional Optimization for performance
 - Incremental MEAN calculation

Analytics Calculation

Trend Calculation

Laboratory for Internet Computing

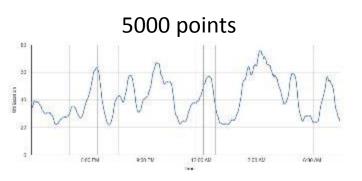
- Implements a Simple Moving Average (SMA)* function
- Process-level Parallelization
 - Break data to small chunks
 - Calculate each chunk Trend
 - Combine the result

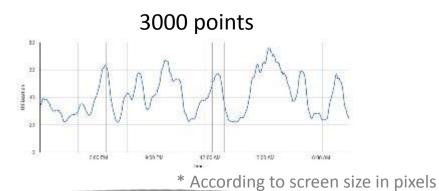
* G. Sanchez, 2010, "Moving intervals for nonlinear time series forecasting,"

Visualizing Time-series

• Time-series data

Laboratory for


- "a sequence of data points, typically consisting of successive measurements made over a time interval"
- Frequently plotted via line charts
 - The most popular choice of visualization, among scatter plots and space filling approaches



Visualizing Time-series - Issues

- Not the whole data can fit to a screen
 - Plotting too much data* results
 - 'messy' Visualizations
 - Reduces the clarity and readability
- User can digest less data than the one actually visualized

Visualizing Time-series - Solutions

- Reduce the amount of data (Data reduction)
 - Remove some strain from the rendering tool
 - Transfer less data over network
- Data reduction Techniques
 - Aggregation, Binning and Sampling
- Algorithms preserve
 - The visualization accuracy
 - Not the analysis process accuracy

Down-sampling

- Largest-Triangle-Three-Buckets algorithm
 - Separates the raw data in almost equal size buckets and
 - Selects from each one the most representative point based on the previously selected sample.

Additional Optimizations

Visual Feedback

Laboratory for

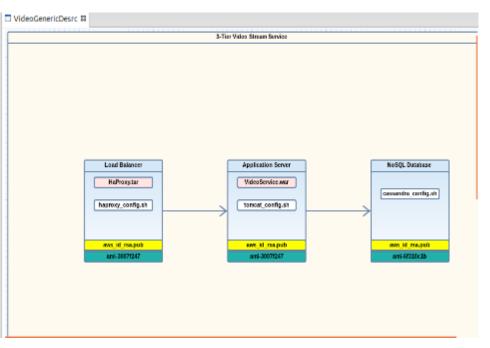
- While user waits for analytics Calculations
- Partial Loading / Pre-Loading
 - Quickly create and present an 'estimation' of the visualization
 - e.g. Using High sampling rate
 - Add the details later, seamlessly

Does it meet our expectations?

- Expected Characteristics / Requirements
 - Calculate analytics for a cloud service deployment
 - Visualize and Map analytics on the service topology
 - Integrate different data sources (e.g. usage and cost metering data)
 - Understand and expose the elastic nature of a service
 - Respond in a timely manner

Evaluation - Functionality

- Define two realistic applications
- Configure to use the collected data
- Use UI to inspect analytics



Use Cases

<u>Case 1</u>

A three-tier service*

- 1. HAProxy load balancer
- 2. Application server tier
- Cassandra NoSQL distributed data storage

*D. Trihinas, "Managing and monitoring elastic cloud applications"

**Service Topology As it was Designed through CAMF User Interface

Use Cases

<u>Case 2</u>

A data analysis and exploratory game application*

- 1. Load balancer
- 2. Application servers (GO)
- Compute nodes for extracting and transforming of data
- 4. Redis cache
- 5. PostgreSQL database as the primary storage
- 6. Cassandra DB storing large binary blobs

	OataPla	sy
Load_Balancer haproxy_celar.eh	Master master_celar.ah	Frontend frontend_celar.sh
626d891d-f186-3/25-8788	526d891d-118b-3125-8789	626-1991-1 +186-3/25-8789
PostgreSQL	Redix	Cassandra
postgresqLsh	redis.sh	(cassandra.sh
528d891d-f185-3f25-8789	526d891d-f185-3/25-8786	526d991d-f185-3725-8789

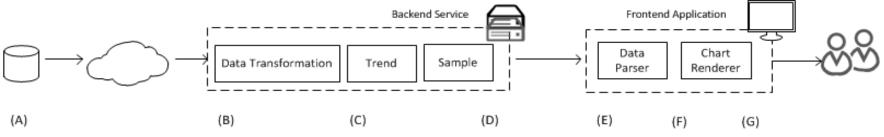
*Dataplay was developed by Playgen for the purposes of CELAR (FP7 - 317790)


**Service Topology As it was Designed through CAMF User Interface

Evaluation - Results

View 'auto-generated' analytics reports, for cloud services components including both **usage** and cost **metrics**

Evaluation - Results


Present analytics for various components mapped onto the **cloud service topology**

Evaluation - Response time

Define What to measure

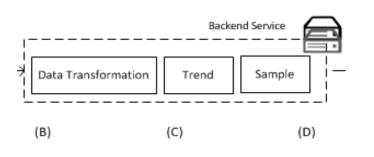
• Date sets

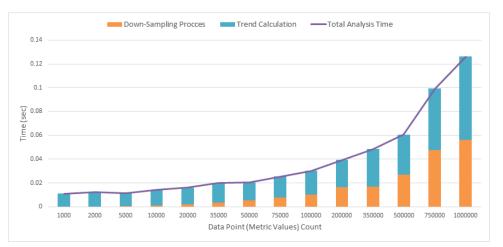
Laboratory for Internet Computing

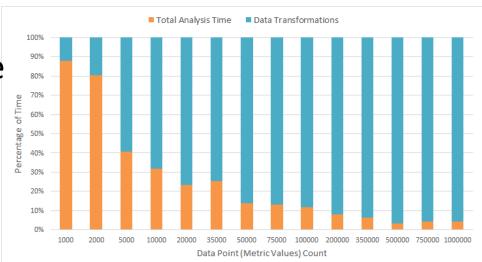
- Up to 1-million random metric values
- Data from running a 3-Tier Application
- Repeat each measurement several times, extract the mean
- Test if response time < 4s

D. Trihinas, "Managing and monitoring elastic cloud applications"

F. F.-H. Nah, "A study on tolerable waiting time: how long are web users willing to wait?"

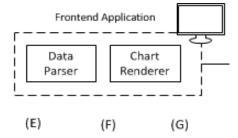

Backend Service (B - C)


Backend Service

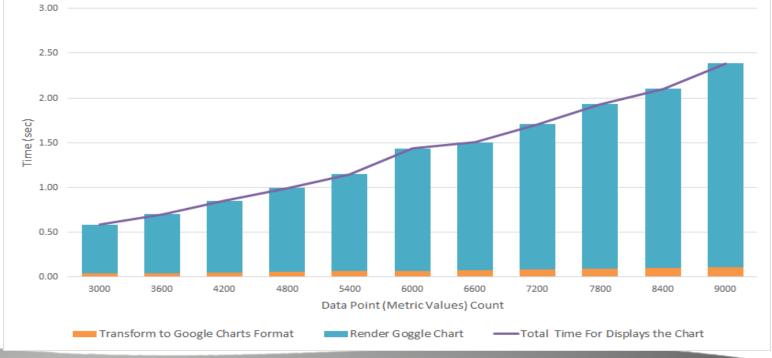

Laboratory for

Internet Computing

- Parse data from data source
- Calculate trend
- Apply sampling
- Write the response


Frontend Application (E - F)

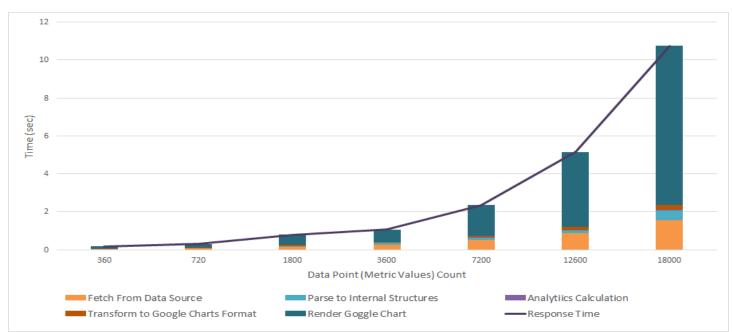
Frontend application


Laboratory for

Internet Computing

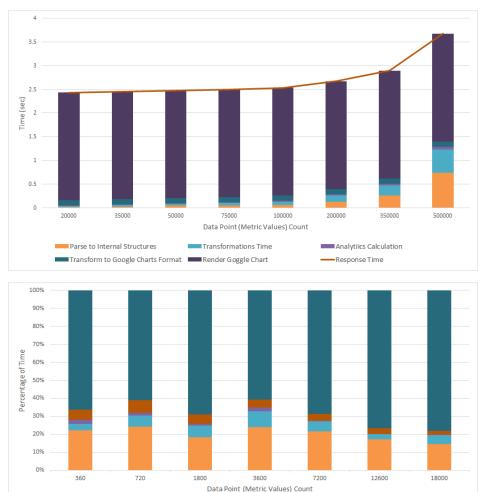
Transform to Google Charts format

• Render the Chart


Foudoulis Athanasios

End-to-End Time – Scenario 1

- Scenario 1
 - 3 Day raw data (10sec interval)
 - 60% Down-sampling
 - ~18000 point for rendering


End-to-End Time – Scenario 2

Scenario - 2

Laboratory for

Internet Computing

- 2 Month raw data (10sec interval)
- Variable Downsampling
 - Target 9000 final points

Fetch From Data Source
 Parse to Internal Structures
 Transform to Google Charts Format
 Render Goggle Chart

Analytiics Calculation

Evaluation Results

- Successfully deliver analytics
- In less than 4-sec time

- Fetch data 20% 30% of total time
- Abstraction(s) does not come for free
- Google Chart Limits
 - Unresponsive after ~9000 points
 - Significant Impact to total response time

Conclusion

- In this thesis
 - Identified the missing of a 'middle' abstraction layer
- To advance the state of the art
 - Utilize service topology
 - provide a more structured visualization approach for the cloud usage analytics.
 - Considering elastic cloud services
 - Use 'Resizing Action' as Add-on information to analytics

Conclusion

- We implemented an analytics tools
 - Targets to help the developers.
 - Connects to different data sources to obtain the data for the analytics
 - Provide topology-aware analytics for elastic cloud services
- We evaluated our tool
 - Provides accurate analytics results using metering data in less than 4 seconds.

Future Work / Plans

- Increase the variety of offered analytics
 - In-depth analysis
 - Behavior forecasting
- Explore 'ways' to increase performance
 - Usage Analytics Frameworks (e.g. Storm)
 - Stream processes
 - But, not all time-series statistic can be "streamlined"

Future Work / Plans

- In the current state, we only support accessing
 - JCatascopia monitoring system API
 - Various user or system exported files that follow a specific format
- Expand the supported Data-Sources
 - Build additional "connectors"
 - Based on our Abstraction Model
 - Target Cloud Monitoring Systems
 - or any service that can provide us with data to enhance the extracted insights.

Acknowledgements

www.celarcloud.eu

co-funded by the European Commission

source code: https://github.com/CELAR/cloud-is

Laboratory for Internet Computing

Laboratory for Internet Computing Department of Computer Science University of Cyprus

http://linc.ucy.ac.cy